
USENIX’23 Artifact Appendix: WaterBear: Asynchronous BFT with
Information-Theoretic Security and Quantum Security

Haibin Zhang, Sisi Duan, Boxin Zhao, and Liehuang Zhu

A Artifact Appendix

A.1 Abstract

This document provides a tutorial on how to use the Water-
bear codebase. In particular, five protocols are evaluated in the
paper: BEAT-Cobalt; WaterBear-C; WaterBear-Q; WaterBear-
QS-C; WaterBear-QS-Q. The results are evaluated on Ama-
zon EC2 instances, reproducing the results of which requires
an account on AWS. As reproducing all of our results in the
paper is time-consuming (which takes us a few weeks), this
document only focuses on how to use the codebase. If one is
interested in reproducing the results in the paper, please refer
to README under the waterbear/ec2 folder of our codebase
for details.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

There is no security, privacy, or ethical concerns.

A.2.2 How to access

Our code can be obtained from https://github.com/
fififish/waterbear, and the stable version can be found at
https://github.com/fififish/waterbear/releases/
tag/usenixsec.

To prevent testers from being able to download
dependencies, we provide a complete code base in-
cluding all dependencies, which can be obtained from
https://github.com/fififish/waterbear/tree/
waterbear-with-dependencies. All dependencies are
included in "waterbear/src/".

A.2.3 Hardware dependencies

All experiments are deployed on EC2 of Amazon Web Ser-
vices. We use both t2.medium and m5.xlarge instances for
our evaluation. The t2.medium type has two virtual vC-
PUs (Intel Xeon expandable processor with maximum fre-
quency of 3.3GHz) and 4GB memory and the m5.xlarge
has four vCPUs (Intel Xeon Platinum processor with maxi-
mum frequency of 3.1GHz) and 16GB memory. Please refer

to https://aws.amazon.com/cn/ec2/instance-types/
for more information about the EC2 instance.

Most results we reported in the paper are conducted on
m5.xlarge instances. We recommend m5.xlarge for repro-
ducibility of our results.

A.2.4 Software dependencies

We ran our experiments using Ubuntu 20.04. More specif-
ically, we choose "ubuntu/images/hvm-ssd/ubuntu-focal-
20.04-amd64-server-20220610" on AWS.

To compile our code of protocols, we require go1.15.14
linux/amd64. We require the following libraries.

Additionally, several open source libraries are required.
One can download the libraries using the following com-
mands:

• go get -u google.golang.org/grpc

• go get -u golang.org/x/net

• go get -u golang.org/x/text

• go get -u golang.org/x/crypto/...

• go get -u golang.org/x/sys

• go get -u google.golang.org/genproto/

• go get -u github.com/klauspost/reedsolomon

• go get -u github.com/klauspost/cpuid

• go get -u github.com/cbergoon/merkletree

• go get -u github.com/golang/protobuf

Alternatively, one can also use the following command to
get the dependencies:

make go

make install

The dependencies have tested as of Aug 2023. In case
of failures of executing the commands above, one can alter-
natively download the dependencies and place them under
waterbear/src/.

1

https://github.com/fififish/waterbear
https://github.com/fififish/waterbear
https://github.com/fififish/waterbear/releases/tag/usenixsec
https://github.com/fififish/waterbear/releases/tag/usenixsec
https://github.com/fififish/waterbear/tree/waterbear-with-dependencies
https://github.com/fififish/waterbear/tree/waterbear-with-dependencies
https://aws.amazon.com/cn/ec2/instance-types/

A.2.5 Benchmarks

We provide a script for reproducing our results. One can use
python 3.x to run the script, we used python 3.8.10 in the
experiment. The script can be found under the waterbear/ec2
folder. We provide a README on how to start the experi-
ments. Alternatively, one can directly ssh to the servers to
start the experiments manually.

For each experiment, we vary two major parameters: n and
b, where n is the number of servers and b is the batch size.
Given a fixed n, we vary b from 1 to a sufficiently large num-
ber (e.g., 30,000) to generate the results. For each experiment,
we obtain the results from all servers, exclude ones with out-
standing results (e.g., extremely large throughput), and obtain
the average result of the servers. We repeat each batch size
in experiment five times to obtain the results reported in the
paper.

A.3 Set-up

A.3.1 Installation

1. Pull the code from https://github.com/fififish/
waterbear or download the stable version from
https://github.com/fififish/waterbear/
releases/tag/usenixsec. Or pull the com-
plete code base including all dependencies from
https://github.com/fififish/waterbear/tree/
waterbear-with-dependencies, which can be com-
piled directly without downloading any dependencies.

2. Set the environment by:

export GOPATH = $PWD

export GOBIN = $PWD/bin

export GO111MODULE = o f f

3. Download the dependencies by running the following
commands:

make go

make install

4. Compile the code by running the following commands:

make build

The compiled file will be created in "$PWD/bin". We
recommend setting up $PWD as ./waterbear.

A.3.2 Basic Test

1. Modify the configuration file "etc/con f . json" to choose
which protocol to execute. Details about the protocols are
included in "etc/node.txt". The id of each server should
be unique. By default, we use monotonically increasing
ids, 0, 1, 2, · · · . If one tests the code locally, modify
IP addresses and port numbers of all servers manually.
The IP addresses and port numbers of all servers can be
modified by script when testing on AWS.

2. To run BEAT-Cobalt, generate keys for threshold PRF
first by running the following command:

keygen [n] [k]

Here, n is the number of servers, and k is the threshold
to generate the common coin. We set up n = 3 f +1 and
k to f +1 for most of our experiments.

If the keys are successfully generated, they are located
under waterbear/etc. Make sure that the generated keys
are placed under the repository of all servers.

3. For all the servers, run the command below to start the
servers:

server [id]

Here, [id] is configured in conf.json and is different at
each server.

4. Start a client to send transaction to start the protocol by
running the following command:

client [id] 1 [b] [msg]

Here, [id] is the identifier of the client. We do not require
the client to be registered. One can use any id that is
unique, e.g., 1000. [b] is the batch size. [msg] can be any
message. One can ignore the [msg] field and a default
message is included in the codebase.

5. All servers will print text like " *****epoch ends". This
means the success of the epoch. One can repeat the
operation of client after the epoch ends to start a new
epoch.

A.4 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

2

https://github.com/fififish/waterbear
https://github.com/fififish/waterbear
https://github.com/fififish/waterbear/releases/tag/usenixsec
https://github.com/fififish/waterbear/releases/tag/usenixsec
https://github.com/fififish/waterbear/tree/waterbear-with-dependencies
https://github.com/fififish/waterbear/tree/waterbear-with-dependencies
https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Version

