
USENIX’23 Artifact Appendix: Forming Faster Firmware Fuzzers

Lukas Seidel1, Dominik Maier2, and Marius Muench3

1Qwiet AI, jlseidel@qwiet.ai
2TU Berlin, dmaier@sect.tu-berlin.de

3VU Amsterdam and University of Birmingham, m.muench@bham.ac.uk

A Artifact Appendix

A.1 Abstract

This artifact allows the replication of the experiments and
results described in Section 6. We provide the following: (i) A
stand-alone repository containing the full source code for our
rehosting and fuzzing engine, ready to be compiled and used
(https://github.com/pr0me/SAFIREFUZZ), (ii) a reposi-
tory containing documentation, build- and setup scripts for
replicating our experiments and a copy of the data we gath-
ered during our evaluation (https://github.com/pr0me/
safirefuzz-experiments).

The artifact has been validated on a HoneyComb LX2
ARM workstation containing 16 ARM Cortex-A72 cores
with a clock rate of up to 2 GHz, 32 GB DDR4 memory with
a frequency of 3200 MT/s and a 128 GB m.2 SSD running
Ubuntu 18.04.05.

A.2 Description & Requirements

A.2.1 Security, Privacy, and Ethical Concerns

While running and evaluating SAFIREFUZZ does not require
destructive steps, small changes to the host system weakening
its security guarantees are needed to run our system.

In particular, we require ASLR to be disabled, to increase
determinism and avoid mapping of, e.g., linked libraries in
segments we need otherwise and expect to be empty. Addi-
tionally, we enable allocating virtual memory down to address
0 by adjusting mmap_min_addr, as we need to place parts of
the firmware image in low memory regions. Both can be con-
figured by running the SAFIREFUZZ/prepare_sys.sh script.
Those changes should be reverted after usage of our system,
either by manually reverting the changes or rebooting.

A.2.2 How to Access

We provide public access to our code and experiment setups
and data through the following GitHub repositories at specific
tags for artifact evaluation:

1. SAFIREFUZZ main repository: https://github.com/
pr0me/SAFIREFUZZ/tree/post_ae
DOI: https://zenodo.org/record/8223057

2. Artifact Evaluation data: https://github.com/
pr0me/safirefuzz-experiments/tree/post_ae
DOI: https://zenodo.org/record/8223055

The repositories contain detailed information on building,
running, and reproducing our experiments.

A.2.3 Hardware Dependencies

SAFIREFUZZ rehosts low-level Cortex-M firmware onto more
powerful Cortex-A cores. As such, a system containing a
Cortex-A core with 32-bit support is required, which can
for instance be found on a Raspberry Pi 4b featuring four
Cortex-A72 cores. Installation instructions for Raspberry Pis
can be found in our main repository. Additionally, due to
interoperability issues, our Fuzzware-specific experiments
were run on an x86-64 VM.

During artifact evaluation, we provided the reviewers with
access to the same hardware we used during our evaluation:
(M1) a HoneyComb ARM workstation, and (M2) an Ubuntu
18.04 x86-64 VM hosted on an AMD EPYC 7662 server.

A.2.4 Software Dependencies

1. Rust: Our artifact is implemented in the Rust program-
ming language. Per the rust-toolchain file provided
in the main repository [1], we pin the installation envi-
ronment to compiler version rustc 1.62.0-nightly.

2. Cross-Compilation: A cross compilation toolchain
is required. On Ubuntu, the corresponding
packets are gcc-arm-linux-gnueabihf and
g++-arm-linux-gnueabihf.

Install the armv7-unknown-linux-gnueabihf rust tar-
get for the above-mentioned compiler version. Note that
these steps are even required when directly building in
an ARM environment such as the HoneyComb. While
the processor can execute programs targeted for both

https://github.com/pr0me/SAFIREFUZZ
https://github.com/pr0me/safirefuzz-experiments
https://github.com/pr0me/safirefuzz-experiments
https://github.com/pr0me/SAFIREFUZZ/tree/post_ae
https://github.com/pr0me/SAFIREFUZZ/tree/post_ae
https://zenodo.org/record/8223057
https://github.com/pr0me/safirefuzz-experiments/tree/post_ae
https://github.com/pr0me/safirefuzz-experiments/tree/post_ae
https://zenodo.org/record/8223055

ARMv7 and ARMv8 versions, if the OS is built for
aarch64, cross-compilation is required as the artifact
binary will execute in ARMv7’s 32-bit mode.

3. External Dependencies: The main artifact requires the
LibAFL and Keystone external dependencies that cannot
be automatically fetched by Rust’s package manager. We
include the dependencies as git submodules, pinned to
specific versions.
The evaluated third-party frameworks introduce their
own dependencies and can be set up as documented in
the HALucinator1 and Fuzzware2 repositories.

4. Python: For multiple build and automation scripts pro-
vided with the AE experiment repository, we require a
Python version > 3.9. Additionally, we require the fol-
lowing Python libraries for analyzing and plotting the re-
sults of our experiments: jupyter, numpy, matplotlib,
seaborn, scipy, pandas.

A.2.5 Benchmarks

To evaluate SAFIREFUZZ, we use a collection of 12+2
firmware samples: 12 samples from the original HALuci-
nator evaluation, and 2 previously untested samples (JPEG
Decoder and STM32 Sine). We include all samples in the
experiment repository under 00_firmware.

Using these samples, we evaluate our approach against the
following fuzzing setups:

1. HALucinator. State-of-the-art high-level-emulation-
based rehosting and fuzzing framework. We include
the fuzzing-ready hal-fuzz version as a submodule in
safirefuzz-experiments/01_fuzzing/hal-fuzz.

2. HALucinator - LibAFL. We replace HALucinator’s
legacy AFL forkserver with a LibAFL-based fork-
server. This new version is identical in configuration
to the forkserver backend we use in SAFIREFUZZ. We
conduct this comparison to eliminate variables such
as differences in mutation strategies. Details can be
found in the safirefuzz-experiments repository under
01_fuzzing/forkserver_LibAFL.

3. Fuzzware. A recent peripheral-modeling-based rehost-
ing approach. This is the only experiment we con-
ducted in an x86-64 environment, as, even after con-
sulting the authors, Fuzzware could not be brought to
run in our default ARM environment. We provide us-
age information and link the necessary submodule under
01_fuzzing/fuzzware.

We include setup guides and detailed usage instructions for
all evaluated frameworks under 01_fuzzing/README.md.

1https://github.com/ucsb-seclab/hal-fuzz
2https://github.com/fuzzware-fuzzer/fuzzware

A.3 Set-up
A.3.1 Installation

If you are using the provided access to the experiment ma-
chines, all systems are already set-up and below instructions
can be skipped. To manually install SAFIREFUZZ, the main
artifact, please follow these steps:
1. Checkout our experiments repository 2 and initialize the

submodules recursively.
2. Inside the experiments repository:

$> cd 01_fuzzing/SAFIREFUZZ
3. Install the Rust programming language.3

4. Install the cross-compilation toolchain with ‘rustup
target add armv7-unknown-linux-gnueabihf‘
and cross-arch linkers, e.g., on Ubuntu by running
‘sudo apt install gcc-arm-linux-gnueabihf
g++-arm-linux-gnueabihf‘.

5. Specify the correct linker by adding the following lines to
your ˜/.cargo/config:
[target.armv7-unknown-linux-gnueabihf]
linker = "arm-linux-gnueabihf-gcc"

6. Specify the target harness you want to execute / fuzz in
src/engine.rs:
use crate::harness::wycinwyc as harness;

7. Build with
$> cargo build -release -target
armv7-unknown-linux-gnueabihf

8. Run the prepare_sys.sh script as root.

A.3.2 Basic Test

After installing and compiling the main arti-
fact, you will find the safirefuzz binary under
./target/armv7-unknown-linux-gnueabihf/release/.
Compilation is always specific to a single target or harness,
so make sure to change the target (cf. Section A.3.1, step
6.) and re-compile before trying to execute a new firmware
image.

Start fuzzing a specific firmware image with a directory of
seeds by running:

./safirefuzz -b 00_firmware/wycinwyc.bin -i
01_fuzzing/seeds/wycinwyc/ -c 1.

When starting a fuzzing campaign, you should see
LibAFL’s status reports scrolling by. For running a test on
the WYCINWYC target, you should be able to see rapidly
increasing numbers for corpus, around 400-600 after approx.
30 seconds, which are interesting inputs leading to unique
new coverage, at roughly 7000 executions per second. You
can find these inputs in the queue directory while crashing
inputs are stored in crashes.

To then execute a single input, execute:

3https://www.rust-lang.org/tools/install

https://github.com/ucsb-seclab/hal-fuzz
https://github.com/fuzzware-fuzzer/fuzzware
https://www.rust-lang.org/tools/install

./safirefuzz -b 00_firmware/wycinwyc.bin -i
01_fuzzing/crashes/SOMECRASHID

We automated most of these steps with the
safirefuzz_target.py script included in the experi-
ments repository under 01_fuzzing. For instance, running
$> ./safirefuzz_target.py nxp_http will automat-
ically build SAFIREFUZZ for the correct target and start
fuzzing. This script defaults to running on the third core (-c
2), change this if you are running multiple tests in parallel.

A.4 Evaluation Workflow

A.4.1 Major Claims

(C1): SAFIREFUZZ achieves statistically significant more
exec/s (ca. 690x on avg.) and coverage than HALuci-
nator, except for coverage on the P2IM PLC and P2IM
Drone targets. This is proven by experiment E1.

(C2): SAFIREFUZZ achieves more exec/s (ca. 1100x on
avg.) and coverage than HALucinator-LibAFL, except
for coverage on the UDP Echo Server, STM PLC,
P2IM PLC and P2IM Drone targets. These results are
statistically significant, except for coverage on the P2IM
PLC, STM PLC, WYCINWYC, and UDP Echo Client
targets. This is proven by experiment E2.

(C3): SAFIREFUZZ achieves more exec/s (ca. 145x on
avg.) and coverage than Fuzzware, except for coverage
on P2IM PLC4 and P2IM Drone. The results are
statistically significant except for coverage on the
6LoWPAN RX/TX, STM PLC, and WYCINWYC
targets and for execution speed on the SAMR21 target.
This is proven by experiment E3.

(C4): SAFIREFUZZ reliably re-discovers previously found
bugs during fuzzing (E0). This includes vulnerabilities
in the WYCINWYC and 6LoWPAN RX/TX targets as
discussed in Section 6.4.

(C5): SAFIREFUZZ finds crashes in the previously untested
firmware images JPEG Decoder and STM32 Sine. This
can be replicated with experiment E4. We discuss the
findings in Section 6.4 of our paper.

For C1, C2 and C3, we discuss our results in Section 6.2 in
the main paper. Table 3 reports numbers gathered during our

4The paper as published as part of the proceedings contains an error in
which the list of valid basic blocks for the P2IM PLC target was calculated
incorrectly. This led to underreporting achieved coverage, impacting Fuz-
zware the most. We would like to thank Chris Boyce for pointing this out,
based on the experiment data we published. A version with updated numbers
and graphs can be found under https://download.vusec.net/papers/
safirefuzz_sec23.pdf.

experiments and Figure 3 illustrates achieved coverage over
the course of a 24-hour fuzzing campaign for all targets and
frameworks.

A.4.2 Experiments

As a working SAFIREFUZZ installation is required for the
subsequent steps, refer to Section A.3.1 of this Appendix and
the README of our main repository [1] for instructions.
The following steps assume you work in the pre-configured
environments.

(E0): SAFIREFUZZ Baseline [20 human-minutes fuzzing
set-up time + up to 5x12x24 compute-hours + 10
human-minutes coverage collection set-up time +
2-6 compute-hours queue replay time]: Use the
./safirefuzz_target.py script in 01_fuzzing of
the experiments repository [2] to start a 24-hour fuzzing
campaign for the specified target with SAFIREFUZZ.

(E1): HALucinator Comparison [20 human-minutes
fuzzing set-up time + up to 5x12x24 compute-hours +
10 human-minutes coverage collection set-up time +
2-6 compute-hours queue replay time]: HALucinator is
readily set-up, you can start fuzzing with this framework
by executing the corresponding script in the hal-fuzz
submodule. For further details, refer to the HALucinator
section in 01_fuzzing/README.md.

(E2): HALucinator-LibAFL Comparison [20 human-
minutes fuzzing set-up time + up to 5x12x24
compute-hours + 10 human-minutes coverage collection
set-up time + 2-6 compute-hours queue replay time]:
For details how to start a HALucinator-LibAFL
fuzzing campaign, refer to the corresponding section in
01_fuzzing/README.md.

(E3): Fuzzware Comparison [15 human-minutes fuzzing
set-up time + up to 5x12x24 compute-hours + 15
human-minutes coverage collection set-up time + 2-6
compute-hours queue replay time]: In order to set up
and start fuzzing with Fuzzware, please refer to the
detailed instructions provided 01_fuzzing/fuzzware
as part of our experiments repository.

(E4): Vulnerability discovery [15 human-minutes fuzzing
set-up time + up to 24 compute-hours + 15 human-
minutes replay & verification]: To compile and fuzz the
previously untested targets, please refer to the README
included in 03_case_studies inside the experiment
repository.

Collecting Coverage. For all experiments except E3, cover-
age can be collected using the eval_bbs_halucinator.py

https://download.vusec.net/papers/safirefuzz_sec23.pdf
https://download.vusec.net/papers/safirefuzz_sec23.pdf

script in 02_coverage_collection. For detailed instruc-
tions on this, refer to the README provided within the directory.
For E3, use the scripts fuzzware_genstats_with_hal.sh
and fuzzware_genstats_without_hal.sh provided in
02_coverage_collection and refer to the README for
details.

Analyzing Results. We provide scripts to test whether
achieved coverage and execution speeds are statistical
significant under 04_eval_data inside the experiment
repository. Please use the bb_mann_whitney.ipynb and
execs_mann_whitney.ipynb jupyter notebooks inside the
coverage and executions directories. We further provide a
gen_fig3.ipynb notebook to plot coverage data over time.
To use these notebooks with data from your experiments, you
will need to exchange the .data and .csv in the according
according subdirectories. Please refer to the README for more
details.

Time & Resource Considerations. Due the extent of the
experiments carried out during evaluation, it may not be pos-
sible to run all experiments for all reviewers in the time frame
allocated for artifact evaluation. Hence, we provide the raw
data collected from our runs under 04_eval_data in our ex-
periment repository. The raw data allows to reproduce our
claims without, or only partially, running the experiments.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, Privacy, and Ethical Concerns
	How to Access
	Hardware Dependencies
	Software Dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation Workflow
	Major Claims
	Experiments

	Version

