
USENIX’23 Artifact Appendix:
A Bug’s Life:

Analyzing the Lifecycle and Mitigation Process
of Content Security Policy Bugs

Gertjan Franken
imec-DistriNet, KU Leuven

Tom Van Goethem
imec-DistriNet, KU Leuven

Lieven Desmet
imec-DistriNet, KU Leuven

Wouter Joosen
imec-DistriNet, KU Leuven

A Artifact Appendix

A.1 Abstract
BugHog is a comprehensive framework designed to identify
the complete lifecycles of bugs, from their introduction to
mitigation, and potential regression. For each bug’s proof
of concept (PoC) integrated in the BugHog experiment web
server, the framework can perform automated and dynamic
experiments using Chromium and Firefox revision binaries.

Each experiment is performed within a dedicated Docker
container, ensuring the installation of all necessary dependen-
cies, in which BugHog downloads the appropriate browser
revision binary, and instructs the browser binary to navi-
gate to the locally hosted PoC web page. Through obser-
vation of HTTP traffic, the framework determines whether the
bug is successfully reproduced. Based on experiment results,
BugHog can automatically bisect the browser’s revision his-
tory to identify the exact revision or narrowed revision range
in which the bug was introduced or fixed.

The framework offers a graphical user interface, accessible
through a locally hosted web page. The experiment results are
visualized using a Gantt chart, facilitating easy interpretation
and analysis.

In our study, BUGHOG was employed to identify the lifecy-
cles of 75 bugs related to the Content Security Policy, across
its complete development history in Chromium and Firefox.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Executing our artifact on evaluators’ machines poses no risk.

A.2.2 How to access

The stable version of BugHog as part of the USENIX artifact
evaluation process is available at https://github.com/D

istriNet/BugHog/tree/usenix23-artifact-stable.
The most recent version, which will also be maintained and
updated in the future, can be found at https://github.c
om/DistriNet/BugHog. To clone the repository, use the
following command:

git clone https://github.com/DistriNet/BugHog.git

Or use the GitHub web interface.

A.2.3 Hardware dependencies

To run the framework, the following minimum hardware spec-
ifications are required:

• 2 CPU cores (more cores may be necessary for concur-
rent experiments).

• 8 GB of RAM.

• 5 GB of disk space.

• Internet connection.

Ideally, the number of CPU cores should match or exceed
the number of concurrent experiments the user allows BugHog
to perform. Insufficient disk space may cause the framework
to crash since this could prevent it from temporarily storing
downloaded binaries.

A.2.4 Software dependencies

The BUGHOG framework only relies on Docker, making it
compatible with any operating system that supports Docker
(e.g. Windows, macOS, Linux). All necessary dependencies
are included in the Docker images, eliminating the need for
additional software installations.

A.2.5 Benchmarks

No specific benchmarks are associated with this artifact.

https://github.com/DistriNet/BugHog/tree/usenix23-artifact-stable
https://github.com/DistriNet/BugHog/tree/usenix23-artifact-stable
https://github.com/DistriNet/BugHog
https://github.com/DistriNet/BugHog


A.3 Set-up
The installation instructions that follow can be found in our
GitHub repository’s README.md as well.

A.3.1 Installation

Follow these steps to install BUGHOG:

1. Clone the repository, and navigate to the root directory:

git clone https://github.com/DistriNet/BugHog.git
cd BugHog

The project can also be downloaded through GitHub’s
web interface at https://github.com/DistriNet/B
ugHog instead.

2. Obtain the required BUGHOG Docker images:

• Option A: Pulling (fastest)
Use the following command to pull the necessary
pre-built Docker images:

docker compose pull core worker web

• Option B: Building
If you intend to modify the source code, use the
following commands to build the required Docker
images. Rerun this script if you make any changes
to the source code:

docker compose up node_install_deps
docker compose up node_build
docker compose build core worker web

For reference, building the images takes approxi-
mately 4 minutes on a machine with 8 CPU cores
and 8 GB of RAM.

3. (Optional) Use your own MongoDB instance.

If you prefer using your own MongoDB instance, pro-
vide the connection parameters in a .env file at the
project’s root:

bci_mongo_host=[ip_address_of_host]
bci_mongo_database=[database_name]
bci_mongo_username=[database_user]
bci_mongo_password=[database_password]

If not provided, BUGHOG will spin up a MongoDB in-
stance in a Docker container. The data is persisted be-
tween runs within the database folder, allowing you to
safely stop and start BUGHOG without losing any data.

A.3.2 Basic Test

To start the framework, execute the following command:

docker compose up core web

Depending on the installation option chosen earlier, a
pulled or locally built image will be used. You can switch
between the two options by executing the appropriate instal-
lation step before starting the framework.

To access the web interface, open your web browser and
navigate to http://localhost:5000. BUGHOG is ready
for use when the following message is logged in either the
terminal window or the web interface:

[INFO] bci.master: BugHog is ready!

Perform a simple test by following these steps:

1. Select the CSP project and Chromium browser from the
dropdown menus in the upper left corner of the web
interface.

2. Choose the c1064676 experiment from the
Experiments pane. 1

3. Set the Evaluation range with a lower version of 20
and an upper version of 110.

4. Input 1 for the Number of parallel containers. 2

5. Click the green Start evaluation button.

As the evaluation progresses, the framework will provide
updates in the terminal window or Log pane at the bottom
of the web interface. The information and Gantt chart in
the Results pane will be updated automatically as well, if
c1064676 is selected in the Select an experiment drop-
down menu. Please note that the Gantt chart requires a mini-
mum of two completed experiments before it can be generated.
Each dot in the Gantt chart represents whether the bug can
be reproduced in the corresponding revision binary. By hov-
ering over a dot, the associated revision number and browser
version can be observed. To prevent the Gantt chart from
refreshing automatically, the Auto-refresh Gantt chart
checkbox can be unchecked. This might be necessary when
zooming in on a specific part of the chart, since the zoom
level will be reset when the chart is refreshed. A refresh can
be triggered manually by clicking the Refresh button.

You have the option to stop the evaluation at any time by
clicking either the yellow Stop gracefully button, which
allows the ongoing experiments to finish before stopping,
or the red Stop forcefully button, which immediately at-
tempts to halt all experiments. When all experiments have
ended, either by user intervention or because the last available
revision has been evaluated, the following line will be logged:

[INFO] bci.master: BugHog has finished the evaluation!

1Experiments are named after the bug report ID. Experiments with a c as
prefix are Chromium reported bugs, while experiments with an f as prefix
are Firefox reported bugs.

2Feel free to increase this number if you have more available CPU cores.

https://github.com/DistriNet/BugHog
https://github.com/DistriNet/BugHog
http://localhost:5000


(a) Chromium. (b) Firefox.

Figure 1: Resulting Gantt chart of experiment (E1).

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): BUGHOG is capable of running all browser revision
binaries that support CSP enforcement3 required for our
study, without the need for manual dependency man-
agement. This claim is supported by experiment (E1)
conducted on both browsers.

(C2): We successfully identified the complete lifecycles of
75 bugs in Chromium and Firefox using BUGHOG. Con-
sidering the impracticality of evaluators individually pin-
pointing the lifecycles of all bugs, we will provide our
comprehensive MongoDB lifecycle dataset.4 Evaluators
can utilize BUGHOG to pinpoint the lifecycle of any bug
in our dataset and compare them with our findings. Fur-
thermore, as an example, we describe experiment (E2)
where we trace the lifecycle of one of the CSP bugs.

A.4.2 Experiments

The experiments were conducted on a machine equipped
with 8 CPU cores and 8 GB of RAM, where BUGHOG was
configured to use 8 parallel containers.

(E1): [Support for the complete CSP browser development
history] [20 human-minutes + 15 compute-minutes]:

Description: BUGHOG is capable of running all
necessary browser revision binaries that support CSP
without the need for manual dependency manage-
ment. To demonstrate this capability, we conduct an
experiment to identify the introduction of CSP in
Chromium and Firefox. For this experiment, we utilized
a PoC that employs a CSP policy blocking all resource
loading through the default-src directive, which
is supported since CSP’s introduction. In revisions

3CSP support starts from revision 165317 and 144546 for Chromium and
Firefox, respectively.

4A dump of this dataset is available at: https://github.com/DistriN
et/lifecycle-data

without CSP support, requests are allowed to reach our
server, indicating successful reproduction. The PoC can
be found in the experiments/pages/Support/CSP
directory.

Execution: Select the following evaluation parameters:

• Project: Support

• Browser: Chromium for one evaluation, Firefox for
the other

• Experiment: CSP

• Evaluation range: 20 to 110

• Search strategy: Binary search

• Reproduction id: csp

• Number of parallel containers: any number
from 2 to 8 (higher numbers will result in faster
evaluation)

Click the green Start evaluation button to begin the
evaluation.

Results: By refreshing the Results pane in the web
interface, you will eventually observe that BugHog suc-
cessfully identifies a specific revision range in which the
introduction of CSP occurred. The Gantt chart for both
browsers will also exhibit a distinct pattern indicating
the utilization of binary search. Figures 1a and 1b show
the resulting Gantt charts for Chromium and Firefox,
respectively.
By solely using downloaded publicly available revision
binaries, we can infer that the introduction of CSP in
Chromium took place at revision 165317.5 This revision
corresponds to a WebKit roll, where WebKit’s revision
range [133029 - 133116] was integrated into Chromium.
Through manual analysis of revision metadata, we deter-
mined that revision 1331316 is the exact revision respon-
sible for introducing CSP.

5https://crrev.com/165317
6https://trac.webkit.org/changeset/133131/webkit

https://github.com/DistriNet/lifecycle-data
https://github.com/DistriNet/lifecycle-data
https://crrev.com/165317
https://trac.webkit.org/changeset/133131/webkit


(a) Chromium. (b) Firefox.

Figure 2: Resulting Gantt chart of experiment (E2).

For Firefox, the framework narrows down the revision
range to [144529 - 144643]. Here, through a combi-
nation of self-built binaries and manual analysis, we
inferred that revision 1445467 indeed introduced CSP.

(E2): [Full lifecycle analysis] [20 human-minutes + 40
compute-minutes]:

BUGHOG provides a comprehensive lifecycle analysis
of bugs through the Composite search method. This
approach involves two stages:

• In the first stage, N evenly spread out revisions are
evaluated over the whole indicated range, with N
determined by the value of Sequence limit.

• In the second stage, the analysis focuses on identi-
fying smaller revision ranges where reproducibility
shifts are observed.

In this experiment, we will conduct a lifecycle analysis
of bug f1441468, which was reported for Firefox.8 Al-
though we did not find this bug reported for Chromium,
BugHog has revealed that the bug is reproducible in
Chromium as well in our cross-browser analysis. There-
fore, we will perform this evaluation on both browsers
again in this experiment.
Unlike the previous experiment, our goal here is not just
to determine when the bug was introduced. We aim to
obtain a complete view of the bug’s lifecycle. To achieve
this, we will employ the Composite search strategy.
To ensure that we evaluate approximately one binary per
release version, we will set the Sequence limit to 100.

Execution: Select the following evaluation parameters:
• Project: CSP
• Browser: Chromium for one evaluation, Firefox for

the other
7https://hg.mozilla.org/releases/mozilla-release/rev/6b1

81afc9fadbd4bb9d04648aa24a34bd9731e82
8https://bugzilla.mozilla.org/show_bug.cgi?id=1441468

• Experiment: f1441468
• Evaluation range: 20 to 110
• Search strategy: Composite search
• Sequence limit: 100
• Reproduction id: f1441468
• Number of parallel containers: any number

from 2 to 8 (higher numbers will result in faster
evaluation)

Click the green Start evaluation button to begin the
evaluation.

Results: Figures 2a and 2b show the resulting Gantt
charts for Chromium and Firefox, respectively.
For Chromium, BUGHOG shows that this bug is founda-
tional, as the bug is reproducible since the introduction
of CSP. BUGHOG also identifies a narrow revision range,
specifically [435165 - 435177], where an effective fix
was applied. By manually analyzing revision metadata,
we can determine that the bug was fixed in revision
435165.9

In the case of Firefox, the results indicate that the bug
is non-foundational since it could not be reproduced at
the time of CSP introduction. Instead, the bug was intro-
duced within revision range [428395 - 428677], and sub-
sequently fixed within revision range [587121 - 587215].
Through a combination of self-built binaries and manual
analysis of revision metadata, we can identify the intro-
ducing revision as 42856810 and the fixing revision as
587202.11

Both results can be cross-referenced against the lifecycle
data dump by opening the json file in any text editor
with string search functionality, and searching for the bug
ID without the single-letter prefix (i.e. 1441468). The
object associated with this ID contains the bug’s life-

9https://crrev.com/435165
10https://hg.mozilla.org/releases/mozilla-release/rev/428

568
11https://hg.mozilla.org/releases/mozilla-release/rev/587

202

https://hg.mozilla.org/releases/mozilla-release/rev/6b181afc9fadbd4bb9d04648aa24a34bd9731e82
https://hg.mozilla.org/releases/mozilla-release/rev/6b181afc9fadbd4bb9d04648aa24a34bd9731e82
https://bugzilla.mozilla.org/show_bug.cgi?id=1441468
https://crrev.com/435165
https://hg.mozilla.org/releases/mozilla-release/rev/428568
https://hg.mozilla.org/releases/mozilla-release/rev/428568
https://hg.mozilla.org/releases/mozilla-release/rev/587202
https://hg.mozilla.org/releases/mozilla-release/rev/587202


cycles for both browsers, in which the aforementioned
revisions are listed.

A.5 Notes on Reusability
As mentioned in our paper, BUGHOG is not limited to evalu-
ating CSP bugs but can also be used to analyze other types of
bugs, including those impacting other (security) policies and
functionalities. By integrating the bug’s PoC into the frame-
work, BUGHOG can uncover its complete lifecycle. This in-
tegration is performed by adding the necessary web page
files to the experiments/pages folder and by including the
URL queue of pages to be visited during the experiment
in the experiments/url_queues folder. Since the integra-
tion format may evolve in the future, we provide more de-
tailed instructions on how to integrate new bug PoCs in the
README.md file of our GitHub repository.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


