
USENIX’23 Artifact Appendix:
ACFA: Secure Runtime Auditing & Guaranteed Device Healing via Active

Control Flow Attestation

Adam Caulfield
Rochester Institute of Technology

Norrathep Rattanavipanon
Prince of Songkla University, Phuket Campus

Ivan De Oliveira Nunes
Rochester Institute of Technology

A Artifact Appendix

A.1 Abstract
The artifact of ACFA is a hybrid (hardware/software) archi-
tecture to enable secure auditing of vulnerability sources and
guaranteed remediation when compromise is detected on a
remotely deployed MCU. ACFA prototype is written in C and
Verilog. It is designed alongside an open-source TI MSP430
(openMSP430) and evaluated on a Basys3 FPGA. The artifact
includes Python scripts to execute an end-to-end active CFA
protocol between a remotely deployed MCU Prover (P rv)
equipped with ACFA and a Verifier (V rf) who manages the
MCU and verifies reports from P rv. This appendix aims to as-
sist evaluators in verifying the following ACFA major claims:
low hardware cost of the hybrid CFA design, the ability to
audit periodic runtime reports containing fixed-size control
flow logs (CF Log), and the ability to execute a guaranteed
remediation action as soon as a compromise is detected.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

Commit tree 9cf6550 of the ACFA Github Repository.

A.2.3 Hardware dependencies

The Basys3 Artix-7 FPGA development board is required.

A.2.4 Software dependencies

The current version was evaluated using the 64-bit Ubuntu
18.04 OS. Xilinx Vivado Toolset 2021.1 or higher is required
for synthesizing Verilog files and generating a bitstream for
the Artix-7 FPGA. ACFA build scripts install Ubuntu pack-
ages dependencies in Part 1 of Sec. A.3.1. A minimum

Python version of 3.6.9 is required, and Python dependen-
cies are specified in Part 3 of Sec. A.3.1.

A.2.5 Benchmarks

None.

A.3 Set-up

A.3.1 Installation

Part 1: Download ACFA source code and Ubuntu libraries:
1. Clone the ACFA Github Repository
2. cd into the directory scripts

3. Run sudo make install
Part 2: Download and install Xilinx Vivado

1. Visit Xilinx Vivado Download page.
2. Select the latest version of Vivado that supports Ubuntu.
3. Download and follow directions in the installer.

Part 3: Install pyserial using:
• sudo apt install python3-serial .

. Verify Python required packages from standard distribution:
• time, hmac, hashlib, argparse, pickle,
dataclasses, os, collections.

Part 4: Create ACFA project in Vivado
• Follow the instructions from README.md in the ACFA

Github Repository to Create ACFA project in Vivado.

A.3.2 Basic Test

A simple functionality test includes running a Vivado behav-
ioral simulation of a basic application, an Ultrasonic Sensor,
on ACFA equipped MCU.

1. Open openMSP430_defines.v to set ACFA configu-
rations. For the basic test, everything will be simulated
in Vivado. Therefore, the flag ACFA_EQUIPPED should
be set. However, the flag ACFA_HW_ONLY should not be
set for any simulation. Therefore, "comment-out" this
flag by adding "//" to the start of line 58.

https://github.com/RIT-CHAOS-SEC/ACFA/tree/9cf65504dc1b7dcdae0638f3cdaec57c21c10c07
https://digilent.com/reference/basys3/refmanual
https://www.xilinx.com/support/download.html
https://github.com/RIT-CHAOS-SEC/ACFA/tree/9cf65504dc1b7dcdae0638f3cdaec57c21c10c07
https://www.xilinx.com/support/download.html
https://github.com/RIT-CHAOS-SEC/ACFA/tree/9cf65504dc1b7dcdae0638f3cdaec57c21c10c07
https://github.com/RIT-CHAOS-SEC/ACFA/tree/9cf65504dc1b7dcdae0638f3cdaec57c21c10c07


2. Now we are ready to synthesize openmsp430 with ACFA
hardware. On the left menu of the PROJECT MAN-
AGER, click "Run Synthesis", and select execution pa-
rameters (e.g., number of CPUs used for synthesis) ac-
cording to your PC’s capabilities. This step takes 2-10
minutes.

3. If synthesis succeeds, a window to "Run Implementa-
tion" will appear. Do not "Run Implementation" for the
basic test, and close this prompt window.

4. In Vivado, click "Add Sources" (Alt-A), then select "Add
or create simulation sources", click "Add Files", and
select everything inside openmsp430/simulation .

5. Open the tb_openMSP430_fpga.v file and find lines
193-202. These lines open *.cflog files to simulate
the transmission of CF Log slices for the basic test. There-
fore in lines 193-202, replace <LOGS_FULL_PATH>

with the full file path of the logs subdirectory of the
ACFA directory.

6. Now, navigate to the "Sources" window in Vivado.
Search for tb_openMSP430_fpga , and in the "Simula-
tion Sources" tab, right-click tb_openMSP430_fpga.v
and set its file type as the top module.

7. Go back to the Vivado window, and in the "Flow Naviga-
tor" tab (on the left-most part of Vivado’s window), click
"Run Simulation," then "Run Behavioral Simulation."

8. On the newly opened simulation window, select 8ms as
the time for the simulation to run. Then press "Shift+F2"
to run.

9. The simulation waveform will show two ACFA triggers
occur during the execution due to the device boot and
the program ending. In the logs sub-directory of the
ACFA directory, two *.cflog files were generated. If
two *.cflog files are generated and match the contents
of logs/expected_cflogs_basic_test/ , the basic
test has completed successfully.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1) Hardware Cost: ACFA incurs an additional hardware
cost of 275 Look-up Tables (LUTs) and 202 Flip-Flop regis-
ters (FFs). This is proven by the experiment (E1). The results
of this experiment reflect the results illustrated in Fig. 11 and
discussed in Sec. 6.1 of our paper.
(C2) Secure Auditing via Active CFA: ACFA generates a
series of control flow logs of a maximum size which allow
for a continuous and active control flow attestation protocol.
This is proven by the experiment (E2) and demonstrates the
offline and online phases described in Sec. 6.2 of our paper
when P rv is not compromised.
(C3) Compromise Detection & Guaranteed Healing: When
a control-flow violation has been detected by V rf, ACFA

immediately executes a remediation action. This is proven
by the experiment (E3) and demonstrates the effect of the
remediation phase described in Sec. 6.2 of our paper when
P rv is compromised.

A.4.2 Experiments

(E1): Verifying (C1) [10-15 minutes]

This experiment determines additional LUTs and FFs re-
quired by ACFA hardware on top of the openMSP430 verilog
project in order to estimate the hardware cost. To account
for the cost of ACFA and all interconnections between ACFA
and the openMSP430, we determine the cost by taking the
difference between the cost of openMSP430+ACFA and open-
MSP430 alone.
[Preparation:] To prepare for this experiment, open ACFA
Vivado project, as the Vivado toolset will be used to synthe-
size the Verilog design files into hardware. In addition, open
the file openMSP430_defines.v . For both of these experi-
ments, the flag ACFA_HW_ONLY will always be enabled (en-
sure no "//" precedes the ‘define ACFA_HW_ONLY on line
58). This ensures that only ACFA hardware is measured, and
additional registers to simulate/emulate memory, which is not
part of ACFA hardware, are not included in the measurement
of hardware cost.
[Execution:] The first phase is to determine the cost of
ACFA + openMSP430. Ensure ACFA_EQUIPPED is enabled
(no "//" preceeds the ‘define ACFA_EQUIPPED on line
54 of openMSP430_defines.v ). On the left menu of the
PROJECT MANAGER, click "Run Synthesis" as performed
in the Setup. After Synthesis completes, scroll down to "Uti-
lization" in the "Project Summary" window. Press "Post-
Synthesis" and "Table" to see a table of the hardware cost
utilized by the synthesized Verilog files. The "Utilization
Column" shows the total count of each resource in the "Re-
source" column. Therefore, this table will show the total LUT
(row 1, column 2) and FF (row 3, column 2) required for
ACFA + openMSP430. Take note of these values (referred to
as LUTACFA+MSP430 and FFACFA+MSP430, respectively) since
they are required to determine the final result. To get the cost
of openMSP430 alone, open openMSP430_defines.v ) and
disable ACFA_EQUIPPED (add "//" to the beginning of line
54). Next, save all changes and rerun Synthesis. After it com-
pletes, check the LUT and FF utilization using the previous
steps. This time, the listed LUT and FF specify the cost of
openMSP430 without ACFA. Note these values (referred to
as LUTMSP430 and FFMSP430, respectively) since they are re-
quired to determine the final result.
[Results:] The cost of ACFA is determined by taking the
difference between the cost of ACFA + openMSP430 and the
cost of openMSP430 alone. Below are the expected results.
Look-Up Tables (LUTs):

• LUTACFA+MSP430 = 12373



• LUTMSP430 = 12098
• LUTACFA = LUTACFA+MSP430 −LUTMSP430
• LUTACFA = 12373−12098 = 275

Flip-Flop Registers:
• FFACFA+MSP430 = 1844
• FFMSP430 = 1642
• FFACFA = FFACFA+MSP430 −FFMSP430
• FFACFA = 1844−1642 = 202

(E2): Verifying (C2): [45-75 minutes]

This experiment demonstrates ACFA ability to provide se-
cure auditing of periodic reports through enabling active CFA.
In this experiment, ACFA executes a simple program that re-
ceives a remote user’s password input and compares it with
an expected password. After receiving a correct password, the
Prover (P rv) records six readings from an ultrasonic sensor.
The Verifier (V rf) has configured ACFA to have a maximum
CF Log size of 256B, and the timeout period is set as the
maximum value to effectively deactivate triggers due to a
timeout. This experiment demonstrates ACFA ability to halt
execution and a series of fine-grained and timely reports. In
addition, this experiment demonstrates the effectiveness of
the end-to-end demo’s offline and online phases.
[Preparation:] Add "//" to the start of line 59, remove
any "//" from the start of line 54 in demo_prv/main.c ,
and save changes. Then, open a terminal window and cd

into scripts . Run make demo to compile the software.
After this, open openmsp430_defines.v and make sure
ACFA_EQUIPPED is enabled and ACFA_HW_ONLY is dis-

abled. Save all changes, then run Synthesis as performed
in the Basic Test. Once Synthesis completes, select "Run
Implementation." This process takes 30mins-1hour. After Im-
plementation completes, select "Generate Bitstream," which
will take 1-2mins. P rv will execute on the FPGA using the
bitstream that was just generated. V rf will execute using a
Python script during offline and online phases. During the
online phase, V rf and P rv connect through a USB-UART
interface. Connect the Basys3 FPGA to the machine using the
USB cable included with the board. Then, determine which
serial port the device is connected to (using dmesg com-
mand or some other means). After determining the serial port,
update lines 16-17 in demo_vrf/vrf_online.py to reflect
the correct port. The openMSP430 design shares a port be-
tween the GPIO and UART, and the GPIO port is selected by
default. Therefore to select (and enable) the UART, turn on
the physical switch SW1 on the Basys3 FPGA board.
[Execution]: First complete the offline phase of V rf. Dur-
ing this phase, V rf computes the control flow graph (CFG)
of the application software and computes an HMAC over
the expected application binary. This is completed by the
Python script vrf_offline.py . Open a terminal and ex-
ecute this script by running python3 vrf_offline.py ,
and the binary objects from the offline phase are seen in

demo_vrf/objs . Next, start the online phase of V rf by run-
ning python3 vrf_online.py . V rf will start running and
wait for a report. Next, in Vivado, click "Open Hardware Man-
ager" and then click "Auto-Connect". The FPGA should now
be displayed on the hardware manager menu. Right-click the
FPGA and select "Program Device ."After this, the ACFA-
equipped MCU is programmed onto the FPGA, and P rv will
start running.
[Results]: During the online phase, V rf receives reports from
P rv which contain a CF Log. The directory /logs will be
populated with four CF Log slices during the execution of
the online phase. During each iteration of the active CFA
protocol, V rf will authenticate and verify CFlog slices by
comparing them to the CFG and maintaining a shadow stack.
In demo_vrf/objs , a binary object of the shadow stack
is stored and modified during the online phase. ACFA gen-
erates and sends each report because of an ACFA trigger;
0.cflog and 3.cflog are generated due to the boot/end

of program trigger; 1.cflog and 2.cflog are generated
due to CF Log reaching maximum size. The seven segment
display of the FPGA board will show the current instruction
address: the end of program ( 0xe24a ).

(E3): Verifying (C3) [45-75 minutes]
This experiment executes the same example application as

(E2). However, a buffer overflow is purposefully introduced
in this experiment to cause a control flow attack. Therefore,
this experiment shows that after a control flow violation has
occurred, ACFA guarantees the remediation mechanism exe-
cutes immediately.
[Preparation:] First add "//" to the start of line 54, remove
any "//" from the start of line 59 in demo_prv/main.c , and
save changes. This is the reverse of the first step in (E2) and
enables the buffer overflow. After this, follow all remaining
steps in the Preparation of (E2).
[Execution]: Follow the same steps of Execution of (E3).
[Results]: V rf detects the buffer-overflow during the first
intermediate report ( 1.cflog ). Because of this, V rf sends
a command to execute the healing mechanism: shut down
P rv. On MSP430, this is achieved by setting a bit in the sta-
tus register. After doing so, P rv does not continue executing
and pauses in TCB. This demonstrates that the compromised
P rv could not continue executing due to ACFA. In addition,
because ACFA triggers sent V rf an intermediate report, V rf
could find the vulnerability before the adversary could com-
plete their attack. The seven segment display shows that the
software is contained at TCB-Heal ( 0xa606 ).

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


