
USENIX’23 Artifact Appendix: MorFuzz: Fuzzing Processor via Runtime
Instruction Morphing enhanced Synchronizable Co-simulation

Jinyan Xu
Zhejiang University

phantom@zju.edu.cn

Yiyuan Liu
Zhejiang University
yiyuanliu@zju.edu.cn

Sirui He
City University of Hong Kong

sol.he@my.cityu.edu.hk

Haoran Lin
Zhejiang University
haoran_lin@zju.edu.cn

Yajin Zhou
Zhejiang University
yajin_zhou@zju.edu.cn

Cong Wang
City University of Hong Kong

congwang@cityu.edu.hk

A Artifact Appendix

A.1 Abstract
As introduced in the paper, MorFuzz discovers several new
bugs across open-source RISC-V processors with different
microarchitectures and significantly improves the efficiency
and effectiveness of processor fuzzing. Our artifact provides
binaries and scripts to reproduce those results. This appendix
describes the steps to set up our prototype and run our evalua-
tion experiments.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

The artifact is available at https://github.com/
sycuricon/MorFuzz/releases/tag/usenix23. Both
MorFuzz pre-built binaries and the inputs gener-
ated by DifuzzRTL that we replayed are available at
https://zenodo.org/record/8055696.

A.2.3 Hardware dependencies

MorFuzz uses commercial EDA software, so an x86 proces-
sor is required. We evaluate MorFuzz on a 48-core dual Intel
Xeon Silver 4214 server with 256GB RAM. In addition, at
least 280 GB of storage is required. Storing the input gener-
ated by DifuzzRTL requires 270 GB, and the evaluation also
consumes about 10 GB of storage.

A.2.4 Software dependencies

Our prototype contains three components: an instruction
generator, a co-simulation library, and a top-level fuzzing

framework. We release the instruction generator and the co-
simulation library of MorFuzz as pre-built binaries, they are
compiled with GCC 10.2.1 on CentOS 7.9.2009. In order to
run MorFuzz the same operating system and compiler are re-
quired. MorFuzz uses the Synopsys VCS, a commercial RTL
simulator, to simulate processor designs. You need to purchase
licenses from Synopsys to use VCS. In addition, in order to
cross-compile RISC-V programs, a RISC-V toolchain is also
required, which is available at the official riscv-gnu-toolchain
repository on the GitHub.

A.2.5 Benchmarks

None.

A.3 Set-up

A.3.1 Installation

First, MorFuzz requires the following dependencies, and in or-
der to run the experiment you also need to set up dependencies
from riscv-dv and riscv-torture:

sudo yum -y groupinstall "Development Tools"
sudo yum -y install redhat -lsb libXScrnSaver

centos -release -scl dtc
sudo yum -y install devtoolset -10

Second, clone the repository and execute the setup script.

git clone https://github.com/sycuricon/MorFuzz.git
cd MorFuzz
git checkout usenix23
git submodule update --init --recursive
export ARTIFACT_ROOT=$(pwd)
./scripts/setup.sh

Next, download the MorFuzz pre-built binaries
morfuzz_bin.zip from https://zenodo.org/record/
8055696 and unzip it. You also need to place the decom-
pressed morfuzz_bin directory under the root directory of
the MorFuzz repository.

https://github.com/sycuricon/MorFuzz/releases/tag/usenix23
https://github.com/sycuricon/MorFuzz/releases/tag/usenix23
https://zenodo.org/record/8055696
https://github.com/riscv-collab/riscv-gnu-toolchain
https://github.com/chipsalliance/riscv-dv
https://github.com/ucb-bar/riscv-torture
https://zenodo.org/record/8055696
https://zenodo.org/record/8055696

Finally, download the input sets difuzzrtl_[0-4].zip
generated by DifuzzRTL from https://zenodo.org/
record/8055696 and unzip them. You do not need to copy
them into the repository, making the DIFUZZRTL_INPUT en-
vironment variable point to one of the input sets is enough.

The final directory structure of the project is as follows:
MorFuzz

dep
morfuzz_bin

cj
razzle

patch
scripts
src

A.3.2 Basic Test

Before executing each experiment, you need to point the
ARTIFACT_ROOT environment variable to the directory where
the MorFuzz repository was cloned and execute the env.sh
script to set up the other environment variables.

export ARTIFACT_ROOT=#absolute path to MorFuzz#
cd $ARTIFACT_ROOT
source ./scripts/env.sh

After executing the script if there are no complaints about
missing dependencies, you can execute the basic test script.
The script invokes Rocket, BOOM, CVA6, and Spike in turn
to execute a normal test case, and if the test passes the "***
PASSED ***" message will appear on the terminal.

./scripts/basic.sh

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): MorFuzz is compatible with different microarchitec-
tures and identified new bugs. This claim is supported
by experiment (E1).

(C2): MorFuzz can efficiently achieve better coverage than
DifuzzRTL and other techniques. This claim is supported
by experiment (E2).

(C3): MorFuzz is capable of generating more diverse inputs
than DifuzzRTL, and is comparable to riscv-dv. This
claim is supported by experiment (E3).

(C4): Instruction morphing and state synchronization can
help MorFuzz achieve better coverage. This claim is
supported by experiment (E4).

A.4.2 Experiments

(E1): Executing test cases that trigger discovered bugs on
the corresponding processors to prove that MorFuzz can
be used on different microarchitectures, for details see
src/table2/README.md.

Estimated time: less than 5 human-minute, and less
than 5 compute-minute.
Preparation: Go to the MorFuzz repository root di-
rectory, set up ARTIFACT_ROOT variable and execute
scripts/env.sh.
Execution: Execute scripts/tab2.sh.
Results: Trigger bugs in Table 2. For a detailed analysis
of each result, please refer to src/table2/README.md.

(E2): Evaluating coverage to prove that MorFuzz
achieves better coverage, for details see src/figure8
/README.md.
Estimated time: less than 5 human-minute, and 24
compute-hour.
Preparation: Go to the MorFuzz repository root di-
rectory, set up ARTIFACT_ROOT and DIFUZZRTL_INPUT
variables and execute scripts/env.sh.
Execution: Execute scripts/fig8.sh.
Results: Reproduce Figure 8, you can find the figure at
scripts/output/fig8.pdf.

(E3): Evaluating instruction diversity to prove that MorFuzz
generates instructions with good diversity, for details see
src/figure9/README.md.
Estimated time: less than 5 human-minute, and 24
compute-hour.
Preparation: Go to the MorFuzz repository root di-
rectory, set up ARTIFACT_ROOT and DIFUZZRTL_INPUT
variables, and execute scripts/env.sh.
Execution: Execute scripts/fig9.sh.
Results: Reproduce Figure 9, you can find three
heatmaps named heatmap_<name>.pdf in the
scripts/output directory.

(E4): Evaluating coverage to prove that MorFuzz’s subcom-
ponents can help MorFuzz achieve better coverage, for
details see src/figure10/README.md.
Estimated time: less than 5 human-minute, and 24
compute-hour.
Preparation: Go to the MorFuzz repository root di-
rectory, set up ARTIFACT_ROOT variable and execute
scripts/env.sh.
Execution: Execute scripts/fig10.sh.
Results: Reproduce Figure 10, you can find the figure
at scripts/output/fig10.pdf.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

https://zenodo.org/record/8055696
https://zenodo.org/record/8055696
https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

