
USENIX’23 Artifact Appendix: ARI: Attestation of Real-time Mission
Execution Integrity

Jinwen Wang∗, Yujie Wang∗, Ao Li∗, Yang Xiao†,
Ruide Zhang‡, Wenjing Lou‡, Y. Thomas Hou ‡, Ning Zhang∗

∗ Washington University in St. Louis
† University of Kentucky

‡ Virginia Polytechnic Institute and State University

A Artifact Appendix

A.1 Abstract

This artifact includes all the source code of Attestation of
Real-time Mission Execution Integrity (ARI ), a policy-guided
real-time mission execution integrity attestation framework.
It mainly contains three key component. A compartmentaliza-
tion mechanism, runtime mission information measurement
mechanism, and a mission integrity verification engine. For
this artifact evaluation, we will illustrate ARI ’s functional-
ity by employing an example policy to verify the execution
integrity of a copter flight mission. Specifically, the policy
will utilize controller-based compartmentalization, with the
attitude controller as the critical compartment. We aim to
streamline the Artifact Evaluation (AE) process by providing
a pre-configured virtual machine (VM) with all necessary
dependencies. Additionally, we provide a hardware flight con-
troller accessible via SSH. For further convenience, remote
VM access is made available through Teamviewer.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

Carrying out the Artifact Evaluation (AE) for ARI does not
pose any security, privacy, or ethical concerns. All AE tasks
are carried out within the Virtual Machine (VM) and the
remote hardware flight controller, which are host on remote
machine. This ensures that the AE process remains isolated
and does not interact with the reviewer’s personal or sensitive
code/data.

A.2.2 How to access

Source Code: https://github.com/WUSTL-CSPL/ARI

A.2.3 Hardware dependencies

To properly evaluate our artifact, please ensure that your host
system has stable network to access the remote VM through
Teamviewer. Furthermore, the quadcopter mission runs in a
simulation environment on a Raspberry Pi 3, equipped with a
Navio2 daughter board. To access the remote Raspberry Pi 3
with the Navio2 daughter board, you can utilize the following
command and corresponding password in remote VM:

A.2.4 Software dependencies

To undertake an effective evaluation of the ARI artifact, it is
recommended to use the Ubuntu 16.04 LTS operating system.
Our customized compiler is built upon LLVM 3.9.0, while the
software quadcopter flight controller utilizes ArduPilot 3.9.0.
The underlying verification engine has been developed based
on Capstone 4.0.2, and employs the Black2s hash algorithm.
The cross compiler is gcc-linaro-6.2.1-2016.11-x86_64_arm-
linux-gnueabihf. The OS on Raspberry Pi3 is Linux navio
4.14.95-emlid-v7+.

A.2.5 Benchmarks

None

A.3 Set-up
The setup section is intended for reviewers who wish
to construct the system from scratch. We have made
available a well-configured remote VM accessible via
Teamviewer. Thus, reviewer can skip section 3.

A.3.1 Installation

Dependencies Installation: Install the dependencies for the
three key components of ARI by using the following com-
mands.
$ sudo apt-get install python-pip
$ python -m pip install –upgrade "pip < 19.2"

https://github.com/WUSTL-CSPL/ARI


$ sudo python -m pip install –upgrade "pip < 21.0"
$ sudo apt-get install clang-3.9 && cd /usr/bin && sudo ln
./clang-3.9 ./clang && sudo ln ./clang++-3.9 ./clang++
$ sudo apt install git cmake build-essential make texinfo
bison flex ninja-build ncurses-dev texlive-full binutils-dev
python-networkx python-matplotlib python-pygraphviz
python-serial
$ sudo pip2 -q install -U future lxml pymavlink MAVProxy
$ pip install pydotplus python-louvain bitarray capstone
enum34 pyelftools pyblake2
$ wget http://launchpadlibrarian.net/356067403/gcc-
5-aarch64-linux-gnu_5.4.0-
6ubuntu1~16.04.9cross1_amd64.deb
$ sudo dpkg -i ./gcc-5-aarch64-linux-gnu_5.4.0-6ubuntu1
~16.04.9cross1_amd64.deb

Customized LLVM Installation: ari_dir is the root directory
of ARI project. In VM ari_dir is /home/ari-new-ae/conattest
$ git clone https://github.com/WUSTL-CSPL/ARI.git
$ cd ./conattestllvm
$ chmod +x ./compiler_for_1st_part.sh
$ ./compiler_for_1st_part.sh
$ mkdir build && cd ./build
$ cmake -DLLVM_ENABLE_ASSERTIONS=OFF ..
$ make
$ echo ’export PATH=$PATH:ari_dir/
conattestllvm/build/bin’ ≫ ~/.bashrc
$ source ~/.bashrc

ArduPilot Installation:
$ echo ’export PATH=$PATH:ari_dir/
gcc-linaro-6.2.1-2016.11-x86_64_arm-linux-
gnueabihf/bin’ » ~/.bashrc
$ source ~/.bashrc
Download the Pi3 image in following link. Decompress it into
pi3_img_dir.https://drive.google.com/drive/folders/1WOiFES-
zJf6JkdWjziMnFrqsJJlmlBwy?usp=sharing.
$ cd pi3_img_dir/my-working-image && ./load_image.sh

A.3.2 Basic Test

You can verify the success of the LLVM installation by using
the command llvm-config –version. A successful installation
will return 3.9.0svn as the result

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): ARI is capable of compartmentalizing and instrument-
ing the system in accordance with the policy.

(C2): ARI can automatically instrument the CPS, recording
control flow events during runtime.

(C3): ARI has the ability to verify mission integrity based
on runtime measurements.

A.4.2 Experiments

(E1): [Automatic Compartmentalization and Runtime
Measurement Instrumentation] [5 human-minutes + 30
compute-minutes]
How to: Given CPS software such as ArduPilot, ARI uses
command line instructions to automatically compartmentalize
and instrument the software.
Preparation: Implement the compartmentalization policy in
ari_dir/graph_analysis/analyze.py (ari_dir refers to the root
directory of ARI , i.e., /home/ari-new-ae/conattest in VM). We
have provided the default one, partition_by_controller. Iden-
tify the critical compartments in ari_dir/ardupilot/crit_cpt;
we have designated the attitude controller as the critical com-
partment. Please note that the terminal might display a
’Build Failed’ message due to linking issues during the
ArduPilot build, but this is normal; we will link it later.
Execution: $ cd ari_dir
$ cd ./conattestllvm && ./compiler_for_1st_part.sh
$ cd ./build && make -j2
$ cd ../../ardupilot
$ source ./compile_1st_part.txt
$ cd ../conattestllvm && ./compiler_for_2nd_part.sh
$ cd ./build && make -j2
$ cd ../../ardupilot
$ source ./compile_2nd_part.txt
Results: The resulting binary is stored in
ardu_dir/build/sitl/bin/arducopter and is also trans-
ferred to the Pi3. You can check the compartmentalization of
the application into 8 regions with the following command:
$ readelf -S ardu_dir/ardupilot/build/sitl/bin/arducopter

(E2): [Mission Execution and Measurement Collecting]
[5 human-minutes + 10 compute-minutes]:
How to: Execute a takeoff mission with Ardupilot on Pi3.
The instrumented code will automatically record the runtime
measurements.
Preparation: (1) Log into the remote Pi3 via SSH from VM.
(2) Open a terminal in the VM.
Execution: (1) On the remote Pi3, execute the following
commands:
$ ssh pi@10.228.106.170
$ cd ~&& sync
$ sudo ./arducopter -S -I0 –model + –speedup 1 –defaults
./copter.parm
(2) In the VM, run the following single line command:
$ "mavproxy.py" "–master" "tcp:10.228.106.170:5760"
"–sitl" "10.228.106.170:5501" "–out"
"10.228.106.170:14550" "–out"
"10.228.106.170:14551" "–map" "–console"

You will then see a Console and a Map in the VM. Wait for
approximately 1 minute until the Console displays AP: EKF2
IMU0 is using GPS and AP: EKF2 IMU1 is using GPS.

https://drive.google.com/drive/folders/1WOiFES-zJf6JkdWjziMnFrqsJJlmlBwy?usp=sharing
https://drive.google.com/drive/folders/1WOiFES-zJf6JkdWjziMnFrqsJJlmlBwy?usp=sharing


Next, type the following commands in the terminal (only the
command after > in the following):
STABILIZE> mode guided
GUIDED> arm throttle
GUIDED> takeoff 20

After the flight takes off (wait for about 10 seconds), stop the
processes in the VM terminal and remote Pi3 using Ctrl + C.
Then, transfer the measurement from the remote Pi3 to the
VM terminal using these commands:
$ cd ardu_path/ardupilot/
$ source ./tsf_measurement.txt

Results: The mission measurements are stored in
ardu_path.txt, including ARI_branch.txt, ARI_ind_jmp.txt,
ARI_ret_hash.txt, and ARI_tsf.txt.

(E3): [Measurement Verification] [1 human-minutes + 3
compute-minutes]
How to: Perform the verification using runtime measure-
ments as input. The verification engine will issue an alert
if the verification fails.
Preparation: Open a terminal in the VM.
Execution: $ cd ../oat-verify-engine
$ source ../ardupilot/mission_verify.txt

Results: The verification engine will validate the mission
integrity. If the verification passes, it will display the hash
of all return addresses obtained from both runtime and re-
play. A successful verification will also show Return Integrity
Verification Pass!

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


