
USENIX’23 Artifact Appendix:
Guarding Serverless Applications with Kalium

Deepak Sirone Jegan
University of Wisconsin-Madison

dsirone@cs.wisc.edu

Liang Wang
Princeton University
lw19@princeton.edu

Siddhant Bhagat
Microsoft

sbhagat3@wisc.edu

Michael Swift
University of Wisconsin-Madison

swift@cs.wisc.edu

A Artifact Appendix

This artifact appendix is meant to be a self-contained docu-
ment which describes a roadmap for the evaluation of Kalium.

A.1 Abstract
As an emerging application paradigm, serverless computing
attracts attention from more and more adversaries. Unfortu-
nately, security tools for conventional web applications cannot
be easily ported to serverless computing due to its distributed
nature, and existing serverless security solutions focus on
enforcing user specified information flow policies which are
unable to detect the manipulation of the order of functions
in application control flow paths. In this paper, we present
Kalium, an extensible security framework that leverages local
function state and global application state to enforce control-
flow integrity (CFI) in serverless applications. We evaluate
the performance overhead and security of Kalium using real-
istic open-source applications; our results show that Kalium
mitigates several classes of attacks with relatively low perfor-
mance overhead and outperforms the state-of-the-art server-
less information flow protection systems.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Kubernetes installation requires root privileges on all the
Kubernetes nodes and certain ports need to be exposed for the
OpenFaas installation. The Kalium controller node requires a
TLS issued by Let’s Encrypt. All the nodes need to be able to
communicate with each other through a DNS name (possibly
public to the Internet).

A.2.2 How to access

The artifact including its sub-repositories can be found here:
https://github.com/multifacet/kalium_artifact/

tree/83110fcfd091d9f8bd164007b1570742e0ad107c

A.2.3 Hardware dependencies

Our testbed uses machines with an Intel Xeon E5-2630
2.40GHz CPU and 64 GB RAM on CloudLab. Each ma-
chine is connected to a star topology LAN network with a
speed of 25 Gbps. The Kalium controller runs on a separate
identical node outside the LAN but on the same datacenter.

Any machines of comparable specifications, connected in a
LAN of uniform speed maybe used for the Kubernetes nodes.
The Kalium controller should run on the same datacenter to
minimize noise as opposed to running it elsewhere on the
internet.

All the machines need to be addressable from each other
with a hostname. The Kalium controller doubles up as an
image server that needs a certificate issued by Let’s Encrypt,
this mandates that the hostname of the Kalium controller
should be visible to the internet.

A.2.4 Software dependencies

All the Kubernetes nodes and the Kalium controller have been
testing using Ubuntu 18.04 LTS. We highly recommend using
Ubuntu 18.04 LTS for all machines.

The build machine needs docker installed for the build
process. Please install docker as per the build machine’s
distro’s instructions https://docs.docker.com/engine/
install/. Please do not install docker on any of the Kuber-
netes nodes or the Kalium controller.

A.2.5 Benchmarks

All the required benchmarks and data is packaged in the arti-
fact.

https://github.com/multifacet/kalium_artifact/tree/83110fcfd091d9f8bd164007b1570742e0ad107c
https://github.com/multifacet/kalium_artifact/tree/83110fcfd091d9f8bd164007b1570742e0ad107c
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/


A.3 Set-Up
[Mandatory] This section should include all the installation
and configuration steps required to prepare the environment
to be used for the evaluation of your artifact.

Provision 5 machines for running Kubernetes and 1 ma-
chine for the Kalium controller as specified in A.2.3 and A.2.4.
A possible configuration is:

• node0: Kubernetes Worker

• node1: Kubernetes Worker

• node2: Kubernetes Worker

• node3: Kubernetes Worker

• node4: Kubernetes Controller

• node5: Kalium Controller

Root access is assumed on all the Kubernetes node as well
as the Kalium controller node. Kubernetes requires port 6443
for the service API exposed on all the nodes while OpenFaas
needs port 31112 for the gateway. The Kalium Controller
listens at port 5000 and needs to be exposed to all the Kuber-
netes nodes. The Image Server listens at port 4443 and needs
to be exposed to all the Kubernetes nodes.

Provision a machine for building the artifact binaries.
This system should *not* be one of the Kubernetes
nodes or the Kalium controller. Clone the artifact
repository into the build machine using git clone
https://github.com/multifacet/kalium_artifact
&& cd kalium_artifact && git submodule
update -init -recursive && git checkout
83110fcfd091d9f8bd164007b1570742e0ad107c.

Please follow kalium-benchmarks/README.md to obtain
a TLS certificate issued by Let’s Encrypt for the Kalium
Controller node.

A.3.1 Installation

Please follow the steps in README.md except "Running
Benchmarks". By this time, the build machine should have a
build/bin folder that contains the various artifact binaries,
Kubernetes and OpenFaas should be setup in the cluster.

A.3.2 Basic Test

Please refer to README.md for detailed steps to do a basic
test.

A.4 Evaluation workflow
A.4.1 Major Claims

The main claims validated by this artifact are related to the
main claim of Kalium achieving comparable performance to

Valve and Trapeze and being a usable solution due to its low
system call overhead. As noted in Section 5.1.1, the semi-
automated policy generation from existing applications is not
a major contribution of the paper as a lot of the analysis was
done manually. Our paper mainly focuses on defining control
flow integrity for serverless applications, its challenges and
enforcing the same with low overhead.
(C1): Kalium achieves comparable performance as the state

of the art information flow systems Valve and Trapeze.
This is proven by the relative latency overhead experi-
ment described in Section 7.4 of the paper whose results
are illustrated in Figure 8.

(C2): Kalium achieves tolerable per system call overhead of
the order of a few milliseconds in the worst case. This is
proven by the per-syscall measurements in Section 7.4

A.4.2 Experiments

All the experiments have been described in detail in the
README.md file provided with the kalium-benchmarks sub
repository. We omit repeating all the steps here for brevity.
(E1): Valve Benchmarks: Run the Valve Benchmarks with

stock gVisor and Kalium to generate Figure 8 in the
paper. The figure shows the relative overheads of Kalium,
Valve and Trapeze with respect to stock gVisor baseline.
This validates claim C1
How to: Run steps 1-3 in kalium-
benchmarks/README.md
Preparation: Run steps 1-2 kalium-
benchmarks/README.md
Execution: Run step 3 in kalium-
benchmarks/README.md
Results: Run step 5 in kalium-
benchmarks/README.md to generate Figure 8.
The graph should show that Kalium has comparable
overhead as Valve and Trapeze.

(E2): Per Syscall Overhead: Run a microbenchmark function
to generate per system-call overheads in Kalium. This
validates claim C2
How to: Run steps 4 and 7 in kalium-
benchmarks/README.md
Preparation: Run steps 1-2 kalium-
benchmarks/README.md only if it has not been
run yet
Execution: Run step 4 in kalium-
benchmarks/README.md
Results: Run step 7 in kalium-
benchmarks/README.md to print out the per-syscall
(SendMsg and Write) overheads which include (i)
parsing TLS records (ii) TLS record cache lookup (iii)
Event construction time (iv) Guard Local Graph Lookup
(v) Controller Query Total Time and (vi) Total Syscall
Overheads. The overheads should be comparable to that
in Section 7.4 in the paper. The total syscall overhead

https://github.com/multifacet/kalium_artifact


should be of the order of a few milliseconds in the worst
case.


	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-Up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments



