
USENIX’23 Artifact Appendix: UNCONTAINED: Uncovering Container
Confusion in the Linux Kernel

Jakob Koschel†

Vrije Universiteit Amsterdam
j.koschel@vu.nl

Pietro Borrello†

Sapienza University of Rome
borrello@diag.uniroma1.it

Daniele Cono D’Elia
Sapienza University of Rome

delia@diag.uniroma1.it

Herbert Bos
Vrije Universiteit Amsterdam

herbertb@cs.vu.nl

Cristiano Giuffrida
Vrije Universiteit Amsterdam

giuffrida@cs.vu.nl
† Equal contribution joint first authors

A Artifact Appendix

A.1 Abstract

In this artifact we provide the means to reproduce our main
results. Specifically, we show that our framework, UNCON-
TAINED, finds container confusion, both dynamically while
fuzzing and statically with dataflow tracking. We have eval-
uated our artifact on an Ubuntu 22.04.1 (stock Linux kernel
v.5.15) with 16 cores @2.3GHz (AMD EPYC 7643) using a
total of 16 QEMU-KVM virtual machines with 4GB RAM.
Our source code is available at: github.com/vusec/uncontained.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

Since UNCONTAINED is only used for bug finding either stat-
ically or dynamically but running within VMs it does not
impose any machine security, data privacy or other ethical
concerns.

A.2.2 How to access

The files for the artifact evaluation are available at: https:

//github.com/vusec/uncontained/releases/tag/ae.

A.2.3 Hardware dependencies

UNCONTAINED does not impose any strict hardware re-
quirements but we assume a recent x86_64 machine with
enough RAM (minimum 64GB, or enough swap) to compile
LLVM/Linux and run virtual QEMU machines for fuzzing
with syzkaller.

A.2.4 Software dependencies

We expect certain packages from the Ubuntu package man-
ager to be installed, which are required to compile LLVM,
Linux, syzkaller, etc. We describe the necessary packages in
the Set-up section.

If you use a different distribution you need to make sure
to fulfil the necessary dependencies using your dedicated
package manager.

A.2.5 Benchmarks

None.

A.3 Set-up
In general, we recommend using a bare-metal desktop system
running Ubuntu 22.04. Make sure that you have KVM support
and your user is allowed to use KVM. The following packages
are required:

go-task
sh -c "$(curl -ssL https://taskfile.dev/install.sh)" \

-- -d -b ~/.local/bin
llvm-project
sudo apt install build-essential clang-12 lld-12 ninja-build \

ccache cmake
linux
sudo apt install bison flex libelf-dev libssl-dev coccinelle
syzkaller
sudo apt install debootstrap
install golang 1.20.5
GO_VERSION=go1.20.5.linux-amd64
wget https://go.dev/dl/$GO_VERSION.tar.gz
sudo rm -rf /usr/local/go
sudo tar -C /usr/local -xzf $GO_VERSION.tar.gz
rm -f $GO_VERSION.tar.gz
qemu
sudo apt install qemu-system-x86
evaluation
pip3 install scipy pandas

1

github.com/vusec/uncontained
https://github.com/vusec/uncontained/releases/tag/ae
https://github.com/vusec/uncontained/releases/tag/ae

Then make sure that ~/.local/bin and /usr/local/go/bin are
in your PATH to find go and the task binaries:

export PATH=$HOME/.local/bin:/usr/local/go/bin:$PATH

A.3.1 Installation

1. Obtain the artifact source and necessary dependencies:

git clone --recurse-submodules \
https://github.com/vusec/uncontained.git

2. Create the kernel-tools/.env file with the following content
(replace /patch/to/uncontained with the actual absolute path):

REPOS=/path/to/uncontained
LLVMPREFIX=/path/to/uncontained/llvm-project/build
KERNEL=/path/to/uncontained/linux
ENABLE_KASAN=1
ENABLE_DEBUG=1
ENABLE_SYZKALLER=1
ENABLE_GDB_BUILD=1
ADDITIONAL_LLVM_VARIABLES=-DLLVM_ENABLE_EH=ON -DLLVM_ENABLE_RTTI=ON

3. Compile all the necessary dependencies (this will take a
while to compile llvm-project and Linux with fullLTO):

scripts/compile.sh

A.3.2 Basic Test

To test if the sanitizer and the static analyzers work as intended
you can use the tests by running the following:

LLVM_DIR=$PWD/llvm-project/build tests/test.sh
LLVM_DIR=$PWD/llvm-project/build tests/testDF.sh

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): The UNCONTAINED sanitizer finds new types of con-
tainer confusions. This is proven by the experiment (E1).

(C2): The UNCONTAINED sanitizer comes with an accept-
able performance runtime overhead. This is proven by
the experiments (E2) and (E3).

(C3): The UNCONTAINED static analyzer has been used to
uncover new bugs in the Linux kernel. This is proven by
the experiments (E4).

A.4.2 Experiments

(E1): [fuzzing evaluation] [2 human-hours + 24 compute-
hours]: This is the fuzzing experiment using the sanitizer
while fuzzing with syzkaller. Expected results are a range
of bugs reported.
How to: kernel-tools is responsible for starting the
fuzzer with the kernel that has been instrumented with
the sanitizer.
Preparation: Make sure you setup everything from
the Installation step, including building syzkaller and
create the syzkaller image (should be done by the
./scripts/compile.sh script).

Execution: You can compile the kernel with in-
strumentation and start the fuzzer with executing
./scripts/compile.sh && ./scripts/run.sh. Then
let it run for at least 24 hours to get some results.
Results: The result will be the crashes in the
kernel-tools/out/syzkaller-workdir/crashes

directory. We need to manually filter out bugs that are
not triggered by UNCONTAINED (all that do not have
three lines of [UNCONTAINED] before the BUG: line).

(E2): [2 human-hours + 30 compute-hours]: This is the
fuzzing performance experiment using the sanitizer while
fuzzing with syzkaller. Expected results are the overhead
in terms of throughput of executed testcases.
How to: We need to run syzkaller 10 times for one hour
for the baseline (stock syzkaller), with KASAN and with
UNCONTAINED.
Preparation: Make sure you setup everything from
the Installation step, including building syzkaller and
create the syzkaller image (should be done by the
./scripts/compile.sh script).
Execution: You can compile the kernel with in-
strumentation and start the fuzzer with executing
./scripts/run-fuzzing-performance-evaluation.sh.
Then let it run for the 30 hours to get the results.
Results: The result will be the percentage of decreased
executed testcases when running syzkaller. You can now
look at the results with executing:

./scripts/evaluation/syzkaller-bench.py --prefix \
'evaluation/syzkaller/results/syzkaller-bench-'

(E3): [1 human-hour + 1 compute-hour]: This is the LM-
Bench experiment using the sanitizer while running the
benchmarking suite to verify performance overhead.
How to: We need to run LMBench 10 times for the differ-
ent configurations (baseline, UNCONTAINED, KASAN).
Preparation: Make sure you setup everything from
the Installation step, including building syzkaller and
create the syzkaller image (should be done by the
./scripts/compile.sh script).
Execution: You can compile the kernel with in-
strumentation and start LMBench with executing
./scripts/run-lmbench-performance-evaluation.sh.
Then let it run to get the results.
Results: The result will be the overhead numbers of the
different configurations on top of the baseline for the
LMBench testcases. You can now look at the results with
executing:

./scripts/evaluation/lmbench.py --prefix \
'evaluation/lmbench/results'

(E4): [1 human-hour + 3 compute-hours]: This is the static
analyzers experiment using the static analyzer to find the
necessary reports with static analysis.
How to: Compile the kernel with our static analyzers

2

enabled to extract all the bug reports.
Preparation: Make sure you setup everything from
the Installation step, including building syzkaller and
create the syzkaller image (should be done by the
./scripts/compile.sh script).
Execution: You can generate all the reports with
./scripts/run-static-analyzer.sh. Then let it run
to get the results.
Results: The result will be the reports for the different
rules. The results from the LLVM passes are in YAML
and are not yet grouped by the source line (to remove
duplicates). The results from the coccinelle script are text
based and are already filtered based on uniqueness. You
can load the YAML reports into the vscode-extension

to look at them in a more convenient way and do the
grouping based on the source code line.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found
at https://secartifacts.github.io/usenixsec2023/.

3

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

