ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX’23 Artifact Appendix:
HECO: Fully Homomorphic Encryption Compiler

Alexander Viand!, Patrick JattkeZ, Miro Haller?, Anwar Hithnawi?
Untel Labs *ETH Zurich 3UC San Diego

A Artifact Appendix

A.1 Abstract

HECO is a compiler for Fully Homomorphic Encryption built
using the MLIR compiler framework. It translates imperative
programs (defined in a high-level intermediate representa-
tion) into the SIMD-like paradigm required for most FHE
schemes. It uses Microsoft SEAL as the underlying FHE
implementation, generating C++ code that is then compiled
and linked against the SEAL library. HECO uses xDSL (a
Python-based "sidekick" to the C++ based MLIR framework)
for its frontend, which features a simple embedded Domain
Specific Language (DSL) that allows developers to specify
FHE computations in a straight-forward manner.

The artifact also contains reference C++ implementations
written directly against SEAL. For each of the programs we
evaluate, we provide two implementations: one representing
a “naive” non-expert baseline, and one “optimal” implemen-
tation based on the batching approaches generated by the
synthesis-based Porcupine tool, which HECO is compared
against in the paper.

A.2 Description & Requirements
A.2.1 Security, Privacy, and Ethical Concerns

HECO requires evaluators to download, compile and run a
variety of open-source software on their system. Beyond this,
HECO should not impact the security or privacy of the sys-
tem. HECO is a purely local application that does not initiate
network connections. HECO itself does not interact with the
filesystem, using stdin/stdout for input and output; the eval-
uation utilities write to but do not read from the filesystem.

A.2.2 How to Access

HECO is available as open-source software at github.com/
MarbleHE/HECO. The evaluated artifact, specifically, is avail-
able at github.com/MarbleHE/HECO/tree/artifact.

A.2.3 Hardware Dependencies

HECO does not have specific hardware requirements. Note,
however, that the “naive” versions of some of the evaluation

workloads require at least 10 GB of free memory.

A.2.4 Software Dependencies

The HECO artifact has been tested on Ubuntu 20.04 LTS.
Evaluating HECO requires git, cmake and a C/C++ com-
piler and linker (e.g., clang and 11d). In addition, the
LLVM/MLIR framework that HECO depends on requires the
ninja build system. The HECO README . MD provides instruc-
tions on how to satisfy these requirements on debian-like sys-
tems. On other distributions, equivalent packages should exist,
while on macOS, package managers such as brew should be
able to provide these requirements. Note that the Python fron-
tend (which is not part of this Artifact) additionally requires
Python 3.11 or newer, with the pip package manger. A plot-
ting script is included with the artifact for convenience, this
also requires Python and, additionally, LaTeX to be installed.

A.2.5 Benchmarks

The runtime and memory benchmarks require the SEAL li-
bray, which is included as a git submodule. The optional
plotting scripts also require Python and LaTeX to be installed.

A.3 Set-up

HECO should be cloned using git (git clone
https://github.com/MarbleHE/HECO.git). After
cloning, it is necessary to initialize the git submodules that
are used to provide HECO’s external dependencies, which
are the LLVM/MLIR framework and the Microsoft SEAL
library: git submodule update -init -recursive.

A.3.1 Installation

Before HECO can be built, the MLIR framework needs to
be built. For evaluation, it is recommended to build MLIR
in Release configuration. Note that compiling MLIR can
require significant time, ranging from around 20 min on a
powerful desktop or server, to up to two hours on weaker
laptops. Assuming the current working directory is the
HECO repository root, execute the following to build MLIR:

github.com/MarbleHE/HECO
github.com/MarbleHE/HECO
github.com/MarbleHE/HECO/tree/artifact

mkdir dependencies/llvm-project/build

cd dependencies/llvm-project/build

cmake -G Ninja ../llvm \
-DLLVM_ENABLE_PROJECTS=mlir \
-DLLVM_BUILD_EXAMPLES=0FF \
-DLLVM_TARGETS_TO_BUILD=X86 \
-DCMAKE_BUILD_TYPE=Release \
-DLLVM_ENABLE_ASSERTIONS=ON \
-DCMAKE_C_COMPILER=clang \
-DCMAKE_CXX_COMPILER=clang++ \
-DLLVM_ENABLE_LLD=ON \
-DLLVM_INSTALL_UTILS=ON \
-DMLIR_INCLUDE_INTEGRATION_TESTS=0FF

In order to compile and run the generated C++ code, the
Microsoft SEAL library needs to be installed. This can be
done (from the HECO repository root) as follows:

cd ../../seal

cmake -S . -B build

cmake -build build

sudo cmake —-install build

cd ../..

HECO, like its dependencies, uses the cmake build system.

The dependencies are not automatically included in the HECO
build structure (i.e., not added via add_subdirectory) and

cmake will search for the dependencies during configuration.

While SEAL’s installation will be automatically detected,

MLIR requires providing a MLIR_DIR path. Assuming SEAL

and MLIR have been built as indicate above, execute the

following (from the repository root) to build HECO:

mkdir build

cmake -S . -B build \
-DMLIR_DIR=dependencies/llvm-project\

/build/lib/cmake/mlir \
cmake -build build -target heco

A.3.2 Basic Test

After building HECO, you can call heco without any
parameters and feed in any *.mlir file as input, which
should round-trip and output the unmodified input program:
./build/bin/heco < test/example.mlir

You can also test the full compilation flow, by first compiling
the High-Level Intermediate Representation (HIR) into a
low-level C-friendly Intermediate Representation (emitC):
./build/bin/heco -full-pass\

< test/example.mlir > test/out.mlir
This can then be translated into C/C++ source code:
./build/bin/emitc-translate -mlir-to-cpp\

< test/out.mlir > test/out.cpp

A.4 Evaluation workflow
A.4.1 Major Claims

The paper makes the following major claims about the artifact

(C1): HECO produces code that achieves significant speedup
compared to naive/non-batched FHE implementations
(i.e., up to several orders of magnitude faster). This is
demonstrated by (E1) which compares the performance
of naive implementations with HECO-produced code
and is described in Section 6.1 of the paper, with results
highlighted in Figure 5.

(C2): HECO produces code that matches the performance of
“optimally’ batched code. This is shown by the second half
of (E1) which compares HECO to the synthesis-based
Porcupine tool and is described in Section 6.2 of the
paper, with results highlighted in Figure 6.

(C3): HECO'’s solution scales to real-world problem sizes
(which synthesis-based tools fail to do). This is shown
by (E2), which shows HECO'’s compile time for various
problem sizes and is described in Section 6.1, with results
shown in Table 1.

A4.2 Experiments

In the following, we describe the experiments. Note that all

time estimates assume the set-up process (which includes the

potentially lengthy compilation of the LLVM/MLIR depen-

dency) has been completed. Detailed instructions can also be

found in evaluation/README . MD.

(E1): Speedup (evaluation/benchmark)
In order to reproduce the results of Figure 5, the inputs
need to be first compiled using HECO and then run using
the Microsoft SEAL library. In addition, the naive base-
line implementations need to be run using SEAL, too.
This requires the vast majority of the (compute-)time, as
the naive baseline implementations quickly become sig-
nificantly less efficient (i.e., over 15min for a single prob-
lem, compared to fractions of a second for the HECO
optimized version). Running this experiment should re-
quire around 15 human-minutes and no more than 2
compute-hours.
Preparation: In order to compile the programs from the
high-level intermediate representation (HIR) form given
here to *.cpp, you can use a helper script that does
this for all files in the heco_input folder (assuming
your current working directory is the repository root):
./evaluation/benchmark/heco_helper.sh
You can then compile and build the benchmark
target (assuming your current working directory is
the repository root): cmake -build build -target
benchmark
Execution: Execute the generated binary
(./build/bin/benchmark). This will

create a set of *.csv files of the for-
mat <workload> HECO_<size>.csv in
evaluation/plotting/data/benchmark.
Results: The +.csv files report one iteration
on each line, reporting key generation time,
encryption time, evaluation time, and decryp-
tion time (in this order) in microseconds. In
evaluation/plotting/plot_all.py a
rough plotting script is provided, including a pipfile that
defines the necessary dependencies. In addition, the
plotting requires LaTeX to be installed.

(E2): Comparison (evaluation/comparison)

In order to reproduce the results of Figure 6, the pro-
cedure is similar to that for Experiment 1. However, in
addition to the HECO versions and naive baseline im-
plementations, there are also Porcupine reference imple-
mentations. As in the previous experiment, the naive
baselines consume the vast majority of the compute
time. Running this experiment should require around
15 human-minutes and no more than 2 compute-hours.

Preparation: In order to compile the programs from the
high-level intermediate representation (HIR) form given
here to *.cpp, you can use a helper script that does
this for all files in the heco_input folder (assuming
your current working directory is the repository root):
./evaluation/comparison/heco_helper.sh

You can then compile and build the comparison
target (assuming your current working directory is
the repository root): cmake -build build -target
comparison

Execution: Execute the generated binary
(./build/bin/comparison). This will
create a set of *.csv files of the for-
mat <workload> HECO_<size>.csv in

evaluation/plotting/data/comparison.
Results: The +.csv files report one iteration

on each line, reporting key generation time,
encryption time, evaluation time, and decryp-
tion time (in this order) in microseconds. In
evaluation/plotting/plot_all.py a
rough plotting script is provided, including a pipfile that
defines the necessary dependencies. In addition, the
plotting requires LaTeX to be installed.

(E3): Compile Time (evaluation/compile_time)
In order to reproduce the results of Table 1, the pro-
grams need to be compiled with the mlir-timing
option. Running this experiment should require around
30 human-minutes.
Preparation: No additional preparation is required.
Execution: Compile each of the provided HIR
inputs with the timing flags -mlir-timing
-mlir-timing-display=1list added. You
can use a helper script that does this for all files

in the heco_input folder (assuming your cur-
rent working directory is the repository root):

./evaluation/compile_time/heco_helper.sh
Results: The execution time report includes the Total
Execution Time, which can be compared to the results in
the paper. Note that a significant fraction of the compile
time is usually spend in the Canonicalizer pass,
which is a built-in pass from MLIR. As a result, com-
pile times might vary significantly as MLIR updates and
changes the underlying framework. Please also note that
MLIR must be built in Release configuration in order to
achieve acceptable compile time performance.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, Privacy, and Ethical Concerns
	How to Access
	Hardware Dependencies
	Software Dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

