
USENIX’23 Artifact Appendix: Systematic Assessment of Fuzzers using
Mutation Analysis

Philipp Görz1, Björn Mathis1, Keno Hassler1, Emre Güler2,
Thorsten Holz1, Andreas Zeller1, and Rahul Gopinath3

1CISPA Helmholtz Center for Information Security, Germany
2Ruhr-Universität Bochum, Germany

3University of Sydney, Australia

A Artifact Appendix

A.1 Abstract

We provide the source code of our benchmarking framework,
which is written in Python. This includes the code to create the
plots, written in Python and R. Additionally, we provide the
seed corpus used as the initial input for the tool. Furthermore,
we provide the artifacts from the evaluation stages, including
the final databases from which the plots in the paper are
generated.

Additionally, we provide notes and tooling for the two
manual analyses performed for the paper.

A.2 Description & Requirements

Recreating the experimental setup requires a Linux system
with docker installed. Additionally, the user needs to be in
the docker group. To manage the python version and de-
pendencies hatch is used. For details see the readme of the
framework.

The evaluation requires a initial minimal seed corpus,
which is provided by the zip file in the Zenodo link, it is
the ‘seeds/minimal’ directory. Usage of this seed corpus is
described in the readme of the framework.

Additionally, an environment setup script is provided by
the framework, again see the readme for details.

This should (hopefully) be all that is required to recreate the
experimental setup, while we have tested using the framework
on some systems we can obviously not guarantee that it will
work on all systems. If there are any issues please contact us.

The minimal hardware requirements are at least 16GB of
RAM and 50GB of disk space. The RAM requirements scale
with number of running instances, which are more likely lim-
ited by the number of cores available. The framework is de-
signed to scale to with the number of cores.

For reference, the evaluation for the paper used four servers
with Intel Xeon Gold 6230R CPUs, each with 52 cores and
188 GB RAM.

A.2.1 Security, privacy, and ethical concerns

The framework requires a user that is in the ‘docker’ group,
this should be seen as equivalent to root access, although this
way, we avoid running the whole framework as root. Fur-
thermore, the provided setup script will disable ASLR on the
system to stabilize the fuzzing results, but it also facilitates
exploitation of security vulnerabilities. If this is a concern,
comment out the respective line. The docker containers will
access ‘/dev/shm’ and ‘<project root>/tmp’ on the host sys-
tem, this is required for the shared memory and exchanging
files. Other than for building the Docker images, no internet
access is required.

A.2.2 How to access

The artifact consists of two parts: the main framework and
the other artifacts, both are required to reproduce the re-
sults. From the ‘Other Artifacts’, only the seed corpus in
the mua-fuzzer-bench-eval-data.7z archive under the di-
rectory ‘seeds/minimal’ is strictly needed to reproduce the
results. The remaining files can be referenced to support the
evaluation process as they contain our intermediate and final
results.

‘Framework - Source Code’: https://github.com/CISPA
-SysSec/mua_fuzzer_bench/tree/b3cc3815f9dce9371eb5
d461bb5beb888c032327

‘Other Artifacts’: https://zenodo.org/record/8060560

A.2.3 Hardware dependencies

The evaluation framework runs on commodity hardware, but
reproducing every result in the paper will consume a consider-
able amount of CPU ressources. For reference, the evaluation

https://github.com/CISPA-SysSec/mua_fuzzer_bench/tree/b3cc3815f9dce9371eb5d461bb5beb888c032327
https://github.com/CISPA-SysSec/mua_fuzzer_bench/tree/b3cc3815f9dce9371eb5d461bb5beb888c032327
https://github.com/CISPA-SysSec/mua_fuzzer_bench/tree/b3cc3815f9dce9371eb5d461bb5beb888c032327
https://zenodo.org/record/8060560


for the paper used four servers with Intel Xeon Gold 6230R
CPUs, each with 52 cores and 188 GB RAM. Thanks to the
modular design, it is also possible to run the evaluation on a
subset of fuzzers or programs.

A.2.4 Software dependencies

The evaluation framework depends on Linux with docker and
hatch installed. The user needs to be in the docker group. We
tested the framework on Ubuntu and Debian, but it should run
on any distribution.

A.2.5 Benchmarks

The evaluation requires a initial minimal seed corpus, which
is provided by the zip file in the Zenodo link, it is the ‘seed-
s/minimal’ directory. To reproduce the exact figures shown in
the paper, we provide the result databases.

A.3 Set-up

See the ‘Usage’ section of the readme in the framework repos-
itory.

A.3.1 Installation

See the ‘Installation’ section of the readme in the framework
repository.

A.3.2 Basic Test

See the ‘Usage’ section of the readme in the framework repos-
itory. For a basic test the –fuzz-time parameters of the com-
mands shown can be reduced to one minute, --instances
can also be reduced. Additionally, the command run under
‘Basic Evaluation’ can be manually aborted early via a key-
board interrupt (Ctrl+C) to reduce the number of evaluated
supermutants. The commands under ‘ASan’ and ‘24 Hours’
will only evaluate supermutants that have been tried for the
‘Basic Evaluation’.

Expected output for the coverage_fuzzing command is
the directory containing the coverage seed corpus (see the
–result-dir argument), for the eval command the expected
output are the databases placed at the path given by the
–result-path argument.

A.4 Evaluation workflow

A.4.1 Major Claims

[Mandatory for Artifacts Functional & Results Reproduced,
optional for Artifact Available] Enumerate here the major
claims (Cx) made in your paper. Follows an example:

(C1) : Computational effort is reduced by (on average) factor
3.8 by using supermutants. This is a side result from
experiment (E1) described in section 5.2 and reported in
Table 4.

(C2) : Different fuzzers show quite similar results. This is
also proven by experiment (E1) described in section 5.2;
the results are reported in Table 5 and illustrated in a
Venn diagram (Figure 3).

(C3) : Coverage accounts for most mutants detected (97.5%)
in our evaluation. This is the share of all mutants that
were killed by the ensemble of all fuzzers during cov-
erage fuzzing, as explained in Section 5.2 (paragraph
Results). This number can be calculated from the data in
Table 5, which is generated in experiment (E1).

(C4) : ASan moderately increases the number of killed mu-
tants. In Section 5.3, we calculate this number per evalu-
ated fuzzer. This is based on comparing the results from
experiment (E2) shown in Table 6 with the results from
experiment (E1) shown in Table 5.

(C5) : One hour of fuzzing after the seed coverage stage is
sufficient to evaluate a supermutant. In experiment (E3),
we re-run a random subsample for 24 hours and see that
almost no additional mutants are killed (Table 7). This
is described in Section 5.2.

(C6) : Most of the remaining mutants (84%) introduce a
semantic change (theoretically detectable with a perfect
oracle). This is based on manual analysis of non-killed
mutants (E4). The result is described in Section 5.2.1.

(C7) : Mutations induced by our mutation operators are cou-
pled to real faults, since 71% of the studied recent vul-
nerabilities in experiment (E5) can be re-introduced with
our mutation operators. We explain this result in Section
5.4.

A.4.2 Experiments

(E1): [Basic Experiment] [16.36 CPU core years] The initial
experiment as described in Section 5.2. Includes Phase I
and Phase II.
How to: All setup and preparation is explained in the
readme of the framework. Everything should be ex-
plained when following the instructions up to ‘Basic
Evaluation’.
Note that the --seed-dir should point to the extracted
content of the seeds/minimal directory of the eval data
archive.
Results: The resulting plots for experiments E1 to E3
can be are produced as described in the readme of the
framework in the section ‘Getting the Results’.

(E2): [ASan Experiment] [15.16 CPU core years] This ex-
periment depends on E1, keep following the process as
described in the readme of the framework to the section
‘ASan’.



(E3): [24 Hours Experiment] [7.42 CPU core years] This
experiment depends on E2, keep following the process as
described in the readme of the framework to the section
‘24 Hours’.
Note that either the rerun json file can be adapted to
contain 100 mutations or a manual interruption can be
done once the 100 mutations are reached.
Now, finally, the results can be produced as described in
the readme of the framework in the section ‘Getting the
Results’.

(E4): [Manual Analysis of Mutations] [8 human hours]: This
is a manual analysis of mutations that are not killed to see
if the created mutations are useful to evaluate fuzzers.
How to: Examine covered mutations that are not
killed even after the 24 hour experiment, see Section
5.2.1. Just for reference, we provide our notes of the
manual analysis in the Zenodo repository, under the
not_killed_24.xlsx file.
Preparation: This experiment depends on the result of
the previous experiment (E3), the following SQL query
should be run on the database produced. Note that the
prepare_db command needs to be run on the database,
see ‘Getting the Results’ in the readme of the framework.
The list of mutants that are still not killed after 24 hours
is obtained with the following SQL query:

select completed_runs.prog, completed_runs.
mut_id, directory, file_path, line,
column, instr, funname, pattern_name,
description, procedure from
completed_runs

join mutations on mutations.prog =
completed_runs.prog and mutations.
mutation_id = completed_runs.mut_id

join mutation_types using (mut_type)
where num_confirmed == 0
order by random()
limit 120;

Note that some of the mutants can be in system libraries,
which we have skipped during our manual analysis, this
is also the reason why the limit is set to 120 instead of
100.
Note that the source code of the programs can be found
under the <project root>/tmp/programs directory.
Execution: This is a manual experiment, where for each
mutation the corresponding line and surrounding code
is examined to decide if the mutation does not cause a
semantic change, or if it does, whether it is detectable
when using ASan or a simple crash oracle.

(E5): [Manual Analysis of Vulnerability Coupling] [8 human
hours] This is a manual analysis to see if the mutations
that are created simulate real vulnerabilities. This is de-
scribed in Section 5.4.

How to: We regard a vulnerability to be reintroduced
if the mutation causes the patched program to reintro-
duce the vulnerability. We provide the list of CVEs we
analyzed in the Zenodo repository, under the CVEs.xlsx.
The list of CVEs that we analyzed was obtained using the
code in the file cve-script.7z, which uses the official
CVE list as source. The script is written in Rust, though
we would recommend to just re-examine the CVEs we
analyzed.
Preparation: Required is the list of CVEs to analyze
and a description of the mutation operators. Which can
be found in the framework repository under <project
root>/mutation_doc.json.
Execution: For each CVE, examine the patch if it would
be introduced by a mutation operator or a combination
of mutation operators. If so, the CVE is regarded as
reintroduced.

A.5 Notes on Reusability
The framework is modular and allows to run on specified sets
of fuzzers and programs for a chosen time. For details, consult
the readme and help for the evalutation script (accessible
with -h). The readme of the framework repository contains a
section ‘Extending the Tool’, describing how the tool can be
used to evaluate on other programs, fuzzers, and mutations.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found
at https://secartifacts.github.io/usenixsec2023/.

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


