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A Artifact Appendix

A.1 Abstract
In this artifact we provide the means to reproduce our main
results. Specifically, we show that our memory sanitizer, Float-
Zone, can detect memory errors, and that FloatZone’s perfor-
mance is higher than traditional comparison-based solutions.
We have validated the artifact using an Intel i9-13900K CPU
running Ubuntu 22.04 with a stock v5.15 Linux kernel. Our
source code is available at: github.com/vusec/floatzone.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

We require the evaluators to obtain the SPEC CPU bench-
marking suites themselves, since we cannot distribute the
licensed software. As a memory sanitizer, FloatZone poses
no risks to the security of the target machine.

A.2.2 How to access

The files for the artifact evaluation are available at:
https://github.com/vusec/floatzone/releases/
tag/ae-final.

A.2.3 Hardware dependencies

While FloatZone has no strict hardware requirements (we
assume x86-64), we highly recommend using a modern Intel
CPU, since FloatZone’s performance depends on the through-
put of the floating point unit. We have ran benchmarking
experiments on various CPUs (see Figure 6 for more informa-
tion).

A.2.4 Software dependencies

Some packages from the Ubuntu package manager are re-
quired to be installed to accomodate for the build process of

FloatZone (e.g., for building LLVM). These are described in
the Set-up section.

A.2.5 Benchmarks

For this artifact we benchmark using the SPEC CPU2006
benchmarking suite.

A.3 Set-up
We recommend using a bare-metal desktop system with 32GB
of RAM, running Ubuntu 22.04, glibc 2.35, and a stock v5.15
Linux kernel.

A.3.1 Installation

1. Obtain the artifact source:
git clone \
https://github.com/vusec/floatzone.git \
--recurse-submodules

cd floatzone

2. Install some standard dependencies:

sudo apt install ninja-build cmake gcc-9 \
autoconf2.69 bison build-essential flex \
texinfo libtool zlib1g-dev

3. Configure the FloatZone environment by editing the
env.sh file and modifying the FLOATZONE_TOP variable to
reflect the working directory of the system, and then run:

source env.sh

4. Install the FloatZone infrastructure by running:
./install.sh

NOTE: installing LLVM can take up a lot of RAM when
using multiple cores. If the compilation process crashes, use
the ninja -j <cores> parameter inside install.sh to use
less cores.
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A.3.2 Basic Test

To test the functionality of FloatZone, we provide a test case
in the example directory. Run make to obtain three versions
of the buggy binary: uninstrumented, instrumented by Float-
Zone, and instrumented by ASan. The program contains a
buffer of size 16, and the command line argument is used as
an index in this array. Confirm that executing:

./buggy_floatzone_run_base 16

results in an error report containing a faulting address, while
using index 15 does not. See the README on GitHub for
the exact expected output format.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): FloatZone can detect spatial and temporal memory
errors bounded by its security guarantees (as described
in Section 5). This is proven by experiment E1.

(C2): FloatZone provides high performance in terms of run-
time and memory overhead (see Sections 7.3 and 7.4).
This is proven by experiment E2.

A.4.2 Experiments

(E1): [1 human-hour]: Confirming memory error detection.
How to: The Juliet Test Suite can be used to confirm
that FloatZone detects memory errors. This suite con-
tains test cases for spatial and temporal memory errors.
Preparation: Make sure that SEGFAULTS are re-
ported: in the runtime directory, edit wrap.c and
ensure that CATCH_SEGFAULT is set to 1. Run make
inside this directory to ensure the shared object file is
up-to-date. No further preparation is required if the
env.sh and install.sh scripts have been used. If
interested, FloatZoneExt (with partial overflow detection
capabilities, see Section 5 and Figure 5) can be tested
by modifying the FLOATZONE_MODE variable to also
contain the term ‘just_size’ in env.sh.
Execution: python3 run.py run juliet \
floatzone_O0 --build --cwe 121 122 \
124 126 127 415 416

Results: FloatZone and FloatZoneExt can detect most
of the spatial and temporal memory errors present in
the Juliet Test Suite. The expected results are reported in
Table 1 and Section 7.2.

(E2): [15 human-minutes + 5 compute-hours]: Confirming
runtime and memory performance

How to: Run the SPEC CPU2006 benchmarking suite in-
strumented by FloatZone and ASan, and observe the
performance overhead.

Preparation: SPEC CPU2006 needs to be available on the
system and the FLOATZONE_SPEC06 variable in env.sh

needs to point to the directory where it is installed.
For the artifact evaluators, if they cannot obtain SPEC
CPU2006, we can provide access to a machine ready
to run SPEC. In order to run SPEC CPU and its bench-
marks, we make use of a public infrastructure under the
infra directory. The infra also makes sure the SPEC bi-
naries run pinned to core 0. Make sure that the necessary
python packages are installed:
pip3 install psutil terminaltables
Then, since some of the SPEC binaries contain false
positives (see Table 3), in the runtime directory, edit
wrap.c and ensure that SURVIVE_EXCEPTIONS is set to
1. Run make inside this directory to ensure the shared
object file is up-to-date. As can be seen in the wrap.c
source file, this only ensures that exceptions do not abort,
and the program continues executing where it left off.

Execution: We make use of the run.py script to run SPEC
CPU2006 along with the intended instrumentations.
Execute the following command, which runs SPEC
CPU2006 for three runs: the baseline, one with ASan,
and one with FloatZone, and hence takes multiple hours:
python3 run.py run spec2006 default_O2 \
asan_O2 floatzone_O2 --build \
--parallel=proc --parallelmax=1

Results: To obtain the results from the SPEC CPU2006
runs, we again make use of the run.py script.
Find the corresponding output folder in the results
directory that matches the start timestamp (e.g.:
results/run.2023-06-19.13-56-59). Then execute
the following command, replacing the directory with the
one just obtained:
python3 run.py report spec2006 \
results/run.2023-06-19.13-56-59 \
--aggregate geomean --field runtime:median \
maxrss:median
The output of this command can then be used to calculate
the runtime and memory overheads for each individual
binary, as well as for the geomean. As reported in Table 4:
if ran on the i9-13900K machine, the expected runtime
overhead for FloatZone is 36.4%, and 77.8% for ASan,
while the memory overhead is expected to be 182% and
237%, for FloatZone and ASan, respectively.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.
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