ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX’23 Artifact Appendix: Cookie Crumbles: Breaking and Fixing
Web Session Integrity

Marco Squarcina Pedro Adao

TU Wien

Instituto Superior Técnico, ULisboa

Matteo Maffei
TU Wien

Lorenzo Veronese
TU Wien

Instituto de Telecomunicagdes

A Artifact Appendix

A.1 Abstract

This artifact is provided to support the evaluation of all the re-
sults presented in the paper. In particular, (i) the cross-browser
testing suite used to validate the results presented in Table 2,
(ii) the toolchain developed to automatically test server-side
cookie parsers (Section 4.2.2), (iii) the dataset and processing
code of our cookie measurement study (Section 4.4), (iv) re-
producible proof-of-concept attacks against vulnerable Web
frameworks (Section 6), as well as (v) the ProVerif models
and scripts (Section 7).

A.2 Description & Requirements

We provide in this section all the information necessary to
download the artifact and recreate the same experimental
setup used to run the analysis and experiments.

A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

The artifact is available at https://doi.org/10.5281/
zenodo.8220368.

A.2.3 Hardware dependencies

The artifact does not require any specific hardware features.
Notice that the repository includes a copy of the dataset used
in the measurement study (Section 4.4), which is about 3GB
in size.

A.2.4 Software dependencies

Most software dependencies of the artifact are packaged as
Docker containers, hence we require a working Docker En-
gine installation before testing the artifact. When some com-
ponents are not packaged as Docker containers, we provide
instructions to execute them on the host machine. The readme

files of each subfolder describe the specific requirements for
each component. All the components of the artifact have been
tested on Linux.

A.2.5 Benchmarks

The source dataset for the measurement study (Section 4.4)
is the Archive dataset' using the optimized tables from Web
Almanac.” Since this dataset is in the public domain, we
include a copy of the processed dataset via Google BigQuery
in the artifact. The resulting dataset is about 3GB in size and
is provided in the measurement folder of the artifact. All
processing queries are also included in the artifact.

A.3 Set-up

We describe in the following the steps required for the in-
stallation and the basic functionality test of the artifact. We
split each of the following subsections in 5 paragraphs, each
detailing the specific steps required for each subfolder. We
advise reviewers to install and evaluate one component at a
time.

A.3.1 Installation

Browser Tests. The browser test suite can be installed via
Docker.

cd browser-tests
2| docker compose up --build

Ensure that ports 80 and 443 are available on the
local machine and that cookies.localtest.me and
sub.cookies.localtest.me resolve to 127.0.0.1. If this is
not the case, follow the instructions in the readme file.
Detailed information on how to install a specific version of
Firefox is also included in the readme file.

Reflectors. This component includes the toolchain devel-
oped to automatically test server-side cookie parsers. Re-
flectors are minimal programs implemented in one of the

'https://httparchive.org/
Zhttps://almanac.httparchive.org/

https://doi.org/10.5281/zenodo.8220368
https://doi.org/10.5281/zenodo.8220368
https://httparchive.org/
https://almanac.httparchive.org/

tested backends that parses HTTP requests containing a
Cookie header and returns a JSON dump of the cookie names
and values. All supported reflectors for PHP, ReactPHP, and
Werkzeug can be installed using Docker.

Reflectors. Ensure that the reflectors are running by execut-
ing a simple request to each of them.

1| for port in 1700 1701 1702; do curl -H "Cookie: foo=bar"
"http://localhost:${port}"; echo; done

cd reflectors
docker compose up --build

o

Please ensure that ports 1700, 1701, and 1702 are free on the
local machine. The fuzzer runs on the host machine and has
been tested on Python 3.10.6. The only dependency is the
requests library, which can be installed via pip.

1| pip install --user requests

Measurement. The dataset for the cookie measurement
study is provided in the measurement folder. The script used
to analyze the dataset (analyze.py) is written in Python 3
and requires no third-party modules. The other Python script
(draw.py) is used to generate the plot in the paper and re-
quires the matplotlib and numpy library. The scripts have
been tested on Python 3.10.6.

1| pip install --user matplotlib numpy

Web Frameworks. Each vulnerable framework can be in-
stalled via Docker and requires the usage of some environment
variables (detailed in the readme file), for instance:

cd web-frameworks/express-pre-login
export VERSION="v0.5.3"; docker-compose --env-file
../testing.env up -d --build

8]

Ensure that ports 80 and 443 are available on the local ma-
chine and that localtest.me and attack.localtest.me resolve to
127.0.0.1. The automatic testing script runs on the host ma-
chine and has been tested in Python 3.11.3. The dependencies
are the requests and bs4 libraries, which can be installed

via pip.

1| pip install --user requests bs4

ProVerif. We provide an exact copy of our testing environ-
ment in the docker image wert310/proverif:a2e281f.

1| docker pull wert310/proverif:a2e281f

A.3.2 Basic Test

Browser Tests. Point your browser to http://cookies.
localtest.me and https://cookies.localtest.me to
ensure that the test suite is running. Accept the self-signed
certificates for the HTTPS test. Both URLs should display
the “Cookie Integrity Evaluator” page.

The output should be {"foo":"bar"} repeated 3 times. No-
tice that the presence of an additional whitespace character in
the last row is not an issue.

Measurement. The measurement study can be executed
by running the analyze.py script. Ensure that the script is
working by running it without arguments.

./analyzer.py
Usage: python3 ./analyzer.py <csv_directory>

(8]

Similarly, the plot can be generated by running the draw.py
script.

l‘ ./draw.py

Web Frameworks. Point your browser to http://
localtest.me and login with credentials alice:alice.
Transfer 1 credit to bob and ensure your final balance is
999 credits. Access http://attack.localtest.me. The
attacker’s site is running if you obtain information in the
debug session after pressing Set-Pression.

ProVerif. The functionality of the test can be checked by
running ProVerif on one of the models without applying the
fix. Run a shell of the testing environment:

1| docker run --rm -ti -v$PWD:/mnt --workdir /mnt

wert310/proverif:a2e281f bash

Then execute the Flask model without fix:

1| stdouf -o0 make -B run-flask

The output should include:

1| Query event (app_action_successful (cp_9,token_6)) ==>
event (app_action_begin(b_9,token_6)) cannot be proved.

showing that our invariant does not hold for Flask without
applying our proposed mitigation. We provide technical de-
tails on the formalization and instructions on how to verify
all frameworks in the README . md file in the proverif folder.

A.4 Evaluation workflow

Below we describe the steps to reproduce the evaluation of
the paper.

http://cookies.localtest.me
http://cookies.localtest.me
https://cookies.localtest.me
http://localtest.me
http://localtest.me
http://attack.localtest.me

A4.1 Major Claims

(C1): We performed a thorough cross-browser evaluation
of known cookie integrity attacks and introduced new
attack vectors classified along 4 different categories: se-
rialization collisions due to nameless cookies (Section
4.2.1), server-side parsing vulnerabilities (Section 4.2.2),
cookie jar desynchronization issues (Section 4.2.3), and
broken composition of (compliant) parsers (Section
4.2.4). The artifact follows the methodology presented
in (Section 4.3). Browser-side experiments can be re-
produced using the provided test suite (E1.A), while
server-side experiments can be reproduced using the
fuzzer and reflectors (E1.B). The vulnerability affecting
the AWS Lambda Proxy integrations has been fixed by
Amazon and cannot be reproduced.

(C2): We also conducted a cookie measurement study aimed
at assessing the prevalence of cookie name prefixes, se-
cure cookies and nameless cookies in the top 100K web-
sites (Section 4.4). The results of the study can be repro-
duced using the provided dataset and scripts (E2).

(C3): We performed a systematic security analysis of the top
13 Web frameworks, exposing CORF token fixation and
session fixation vulnerabilities in 9 of them. Experiment
E3 reproduces these experiments as well as the results
of our disculosure process.

(C4): We formally verified of the correctness of our proposed
mitigation to the synchronizer token pattern using the
ProVerif protocol verifier (E4).

A.4.2 Experiments

(E1.A): Browser Test Suite [15 human-minutes + 2 compute-
minute + 100MB disk]. Execute the test suite on Firefox-
104 to match relevant findings presented in Table 2.
This experiment is functional to reproduce browser-side
cookie issues (C1). Due to space constraints, details on
how to install Firefox an understand the output of the test
suite are provided in the browser-tests/README.md.

(E1.B): Server-Side Reflectors [15 human-minutes + 5
compute-minutes]. This experiment is meant to repro-
duce server-side cookie issues (C1). A simple fuzzer gen-
erates variations of the Cookie header, sends the same re-
quest to all reflectors, and records any differences in the
JSON dumps. The provided reflectors/README.md
file explains in detail how to interpret the obtained CSV
file and match it to the 3 CVEs assigned to the discovered
vulnerabilities in PHP, ReactPHP, and Werkzeug.

(E2): Cookie Measurement [15 human-minutes + 3 compute-
minutes + 3GB disk]. Reproduce the results of the cookie
measurement study on the top-100K websites (C2), in-
cluding the output of Table 3, Figure 4, and Table 4. From
the measurement folder, execute the analyzer script on
the two provided datasets:

python3 ./analyzer.py data-2021-07-01
python3 ./analyzer.py data-2022-06-01

(S5}

A detailed explanation of the output of the script is pro-
vided in the measurement /README . md. Notice that the
queries to obtain the datasets from Web Archive are also
available in the same folder.

(E3): Web Frameworks [10 human-minutes + 15 compute-
minutes|. Each framework is provided with an automatic
testing script that can be used to test the application.

1| ed express-pre-login

2| export VERSION="v0.5.3"; docker-compose --env-file
../testing.env up -d --build

3| echo "Should,_be_vulnerable to_pre-login"

4| python3 test-express-pre-login.py

For convenience, we also provide a script test_all.sh
that builds and tests all the applications in sequence.
Applications can also be manually tested. For the ex-
ample above, the following tests can be performed: (i)
Access http://attack.localtest.me/ in a browser
and press Set Pre-session. (ii) Open a new tab in
the browser and access http://localtest.me/. (iii)
Login as one of the users, alice, bob, or john_doe.
The password is equal to the name of the user. You
shoud start with 1000 credits. (iv) Return to the
tab http://attack.localtest.me/ and execute a
transfer of 1 credit to attacker. (v). Return to the
tab http://localtest.me/ and refresh. Your bal-
ance should now be 999 credits. Further details in
web-frameworks/README . md.

(E4): ProVerif Verification [30 human-minutes + 7 compute-
minutes]. Verification of the correctness of our pro-
posed fix, i.e., refreshing the token upon login, to the
synchronizer token pattern for all 7 frameworks vul-
nerable to the CORF token fixation (pre-login) attack.
To run the experiment, follow the instructions in the
proverif/README.nd file by executing the for loop
listed under the “Verifying all frameworks” section. The
output of the above loop will contain, for each of the
7 frameworks, the checked properties and the ProVerif
results. The expected output of each framework should
contain 6 reachability queries with result cannot be
proved, showing that all events in the model are reach-
able. As the last line it should contain

1| RESULT event (app_action_successful (cp_18,token_6)) ==>
event (app_action_begin(b_9,token_6)) is true.

proving that our expected invariant is true after applying
the fix to the framework.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

