ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX’23 Artifact Appendix: SPECTREM: Exploiting Electromagnetic
Emanations During Transient Execution

Jesse De Meulemeester Antoon Purnal

COSIC, KU Leuven

COSIC, KU Leuven

Arthur Beckers
COSIC, KU Leuven

Lennert Wouters
COSIC, KU Leuven

Ingrid Verbauwhede
COSIC, KU Leuven

D Artifact Appendix

D.1 Abstract

This appendix describes our artifacts for SPECTREM, a phys-
ical transient execution attack. In our paper, we discuss how
the physical effects of transient instructions can be leveraged
to extract secret information. In this artifact, we provide the
source code for our proof-of-concept implementations and
the scripts to take and evaluate the traces. To allow the repro-
duction of our work, we also provide the side-channel traces
that were used to produce the results in our paper.

D.2 Description & Requirements
D.2.1 Security, privacy, and ethical concerns

None.

D.2.2 How to access

Our artifact consists of two repositories. The first one, hosted
on GitHub, contains all source code and scripts related to
our POC implementations. This repository can be accessed
at https://github.com/KULeuven-COSIC/SpectrEM/
tree/1c0207db3d55580b7£31dfb22£57100ea5544707.
Additionally, to enable the reproduction of our results, we
also provide the side-channel traces for our work in KU Leu-
ven’s Research Data Repository (RDR). This dataset can be
accessed at https://doi.org/10.48804/AHTI1A.

D.2.3 Hardware dependencies

To allow the reproduction of our results without requiring an
extensive EM side-channel setup, we provide our pre-recorded
traces, as discussed above. Therefore, we do not require any
specific hardware setup.

To download all pre-recorded traces, at least 520 GB of
free disk space is required. Additionally, the provided Python
scripts to evaluate these traces use up to 12 GB of RAM. We,
therefore, recommend at least 16 GB of RAM.

D.2.4 Software dependencies

The evaluation of the side-channel traces was performed us-
ing Python 3.11.4. The exact required Python packages are
detailed in our GitHub repository.

D.2.5 Benchmarks

None.

D.3 Set-up
D.3.1 Installation

1. Create a new Python environment and install all depen-
dencies as described in readme .md in our GitHub repos-
itory.

2. Download the traces from the data repository. We pro-
vide a Python script to download these folders in our
GitHub repository (traces/download-traces.py).
Specifically, download the following directories:

* 0-base-experiments/ (33 GB)

e 1-additional-experiments/ (39 GB)

e 2-reducing-assumptions/ (21 GB)

e 3-case-study/ (2 GB)
The directory containing the MLP training data
(4-mlp-data/ (89 GB)) may also be downloaded but is

not required as we provide pre-trained MLP networks
along with the evaluation traces.

D.3.2 Basic Test

Activate the
start Jupyter

created Python environment and
Notebook. Open the notebook

scripts/evaluate/evaluate_extraction_methods.ipynb

and run the first cell. If no errors are displayed, all packages
are installed correctly.

To make sure the traces are downloaded to the correct loca-
tion, step through the notebook. If the traces are downloaded

https://github.com/KULeuven-COSIC/SpectrEM/tree/1c0207db3d55580b7f31dfb22f57100ea5544707
https://github.com/KULeuven-COSIC/SpectrEM/tree/1c0207db3d55580b7f31dfb22f57100ea5544707
https://doi.org/10.48804/AHTI1A

to a different location, the path pointing to these traces can be
changed by modifying the prerecorded_traces_dir vari-
able.

If no errors are encountered when stepping through this
Jupyter Notebook, everything is set up correctly.

D.4 Evaluation workflow
D.4.1 Major Claims

(C1): Variable-time instructions and control flow dependen-
cies enable physical transient execution attacks. In opti-
mal conditions, both SPECTREM and MELTEMDOWN
can achieve low BER, even when only considering a
single trace (cf. Section 6 of our paper).

(C2): The simplifications introduced for evaluation can be
removed by additional post-processing (cf. Section 7
of our paper). Specifically, we show that SPECTREM
attacks can still be carried out when the clock frequency
is not locked, when the POC is not pinned to a specific
core, and when using cache thrashing.

(C3): The code pattern that forms control flow gadgets can
be found in OpenSSH. With only minor changes, the two
uncovered gadgets can be exploited through the network
interface (cf. Section 8 of our paper).

D.4.2 Experiments

Before
stepping

experiments, we recommend
following Jupyter notebook:

running the
through the

scripts/evaluate/evaluate_extraction_methods.ipynb

[30 human-minutes + 10 compute-minutes]. This notebook
details how the traces are evaluated. For each of the
following experiments, we provide Python scripts that use
the techniques discussed in this notebook to automatically
evaluate the traces.

(E1.1): [Base experiments] [15 human-minutes + 20
compute-minutes + 92 GB disk + 4.2 GB RAM]: This
experiment evaluates the baseline performance of the
SPECTREM and MELTEMDOWN POCs.

Preparation: Download the traces in folder
0-base-experiments from the data repository.
Execution: Run the following Python script:

scripts/reproduce/0-base-experiments.py.
This script will output the BERs for each POC.
Results: The Python script will print the BERs for the 5
different base POCs. The expected outputs are included
in scripts/readme.md. These results can be compared
with the results in our paper in Table 1 and Section 6.2.
(E1.2): [Additional experiments] [15 human-minutes + 20
compute-minutes + 110 GB disk + 4.5 GB RAM]: This
experiment evaluates the performance of the POCs un-
der different numbers of training packets and different
numbers of udiv instructions.

Preparation: Download the traces in folder
l-additional-experiments from the data repository.
Execution: Run the following Python script:
scripts/reproduce/l-additional-experiments.py.
This script will output the BERs for each POC.
Results: The Python script will print the BERs for the
different conditions and produce two figures. The ex-
pected outputs are included in scripts/readme.md.
These results can be compared with the results in our
paper in Figure 5 and Figure 7.

(E2): [Reducing assumptions] [15 human-minutes + 2
compute-hours + 58 GB disk + 12 GB RAM]: This ex-
periment evaluates the effect of removing the evaluation
assumptions.

Preparation: Download the traces in folder
2-reducing-assumptions from the data reposi-
tory.

Execution: Run the following Python script:
scripts/reproduce/2-reducing-assumptions.py.
This script will output the BERs for each experiment.
Results: The Python script will print the BERs for the 5
different base POCs. The expected outputs are included
in scripts/readme.md. These results can be compared
with the results in our paper in Table 1 and Section 6.2.

(E3): [Case study] [30 human-minutes + 2 compute-minutes
+ 5GB disk + 2.8 GB RAM]: This experiment evalu-
ates the performance of two real-world code patterns in
OpenSSH.

Preparation: Download the traces in
3-case-study from the data repository.
Execution: Verify that the two code snippets in Listings
4 and 5 in our paper are indeed taken from the latest
version of OpenSSH at the time of submission (9.3). To
evaluate the performance of these two gadgets, run the
script scripts/reproduce/3-case-study.py.
Results: The Python script will print the BERs for
the two gadgets. The expected outputs are included in
scripts/readme.md. These results can be compared
with the results in our paper in Section 8.

folder

D.5 Version

Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

