
USENIX’23 Artifact Appendix: Towards A Proactive ML Approach for
Detecting Backdoor Poison Samples

Xiangyu Qi
Princeton University

Tinghao Xie
Princeton University

Jiachen T. Wang
Princeton University

Tong Wu
Princeton University

Saeed Mahloujifar
Princeton University

Prateek Mittal
Princeton University

A Artifact Appendix

A.1 Abstract

This artifact is mostly based on PyTorch, requiring GPU
support. We implemented the proposed defense, Confusion
Training (Algorithm 1) of our paper "Towards A Proac-
tive ML Approach for Detecting Backdoor Poison Sam-
ples", together with a diverse set of baseline defenses
and attacks. The artifact can reproduce our major ex-
perimental results (true positive rate, false positive rate,
clean accuracy and attack success rate) reported in the
main body of the paper. Our source code is available at
https://github.com/Unispac/Fight-Poison-With-Poison, with
a detailed guide at https://github.com/Unispac/Fight-Poison-
With-Poison/blob/master/misc/reproduce.md.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

None. All backdoor attacks against DNNs in our artifact are
conducted on the simulation level, therefore do not lead to
any damage in the real world.

A.2.2 How to access

Our artifact source code is hosted at a GitHub repository,
available through https://github.com/Unispac/Fight-Poison-
With-Poison. For artifact evaluation purposes, this com-
mit is used: https://github.com/Unispac/Fight-Poison-With-
Poison/tree/b9ef34d

A.2.3 Hardware dependencies

This artifact minimally requires a Linux server with 300 GB
disk storage, 10 GB RAM, 4 CPU cores, and 2 Nvidia GPUs
(we use A100 in our experiments).

A.2.4 Software dependencies

This artifact relies on multiple existing Python packages, in-
cluding Python, PyTorch, scipy and so on (details in require-
ment.txt). To reproduce only results of our proposed defense
(Confusion Training), you may maually install PyTorch fol-
lowing their official guide and all other packages with pip.
To produce results of other baseline defenses (specifically,
Frequency and SPECTRE), you may also need to manually
install Tensorflow (refer to official guide) and Julia (refer to
other_cleansers/spectre/README.md). Our guide includes
all details to set up the required software dependencies.

A.2.5 Benchmarks

Our experiments with this artifact are reported on 4 bench-
mark datasets: CIFAR10 (a 10-class common image clas-
sification task), GTSRB (a 43-class traffic sign recognition
task), ImageNet (a 1000-class standard image classification
task), and Ember (a malware classfication task). Among
them, CIFAR10 and GTSRB are automatically downloaded
and set up in our artifact, and a detailed guide to down-
load and set up ImageNet and Ember datasets is available
at misc/reproduce.md#todo-before-you-start.

A.3 Set-up
A.3.1 Installation

Our documentation contains a detailed guide to install our
artifact and required environments. Briefly, the installation
procedure is as follows:

1. Clone artifact from https://github.com/Unispac/Fight-
Poison-With-Poison/tree/f2f02c2.

2. Install PyTorch following the official guide.

3. Install other Python packages via pip install -r
requirement.txt.

https://github.com/Unispac/Fight-Poison-With-Poison
https://github.com/Unispac/Fight-Poison-With-Poison/blob/master/misc/reproduce.md
https://github.com/Unispac/Fight-Poison-With-Poison/blob/master/misc/reproduce.md
https://github.com/Unispac/Fight-Poison-With-Poison
https://github.com/Unispac/Fight-Poison-With-Poison
https://github.com/Unispac/Fight-Poison-With-Poison/tree/b9ef34d
https://github.com/Unispac/Fight-Poison-With-Poison/tree/b9ef34d
https://github.com/Unispac/Fight-Poison-With-Poison/blob/master/requirements.txt
https://github.com/Unispac/Fight-Poison-With-Poison/blob/master/requirements.txt
https://pytorch.org/get-started/locally/
https://www.tensorflow.org/install
https://github.com/Unispac/Fight-Poison-With-Poison/blob/master/other_cleansers/spectre/README.md
https://github.com/Unispac/Fight-Poison-With-Poison/blob/master/misc/reproduce.md
https://github.com/Unispac/Fight-Poison-With-Poison/blob/master/misc/reproduce.md#todo-before-you-start
https://github.com/Unispac/Fight-Poison-With-Poison/tree/f2f02c2
https://github.com/Unispac/Fight-Poison-With-Poison/tree/f2f02c2
https://pytorch.org/get-started/locally/

4. (Optional) Install Tensorflow [guide] and Julia [guide].

5. Download ImageNet [link] and Ember [link] datasets.
Refer to [link] for more details to set them up properly.

6. Execute command python create_clean_set.py
-dataset=$DATASET -clean_budget=$N (where
$DATASET = cifar10, gtsrb, imagenet, ember,
$N = 2000 for cifar10 and gtsrb, $N = 5000 for imagenet
and ember) to initialize the datasets.

7. Run data/cifar10/clean_label/setup.sh to setup
data for clean label (CL) attack.

8. Download pretrained models (for Dynamic at-
tack) all2one_cifar10_ckpt.pth.tar [link] and
all2one_gtsrb_ckpt.pth.tar [link] to models/.

A.3.2 Basic Test

We provide a simple example (defending against BadNet at-
tack on CIFAR10) involving our whole artifact pipeline (poi-
soning, training, defense, retraining, etc.) in our detailed guide
at misc/reproduce.md. Briefly, one may test our artifact’s core
functionalities via:

1. Create a BadNet poisoned dataset by running python
create_poisoned_set.py -dataset=cifar10
-poison_type=badnet -poison_rate=0.01.

2. Train on the poisoned dataset by running python
train_on_poisoned_set.py -dataset=cifar10
-poison_type=badnet -poison_rate=0.01. The
output should include the clean accuracy (ACC) and
attack success rate (ASR) of the backdoor model in each
training epoch.

3. Launch our Confusion Training defense by running
python ct_cleanser.py -dataset=cifar10
-poison_type=badnet -poison_rate=0.01
-devices=0,1 -debug_info. The last couple lines of
the output should include the defense results (recall
and fpr).

4. Retrain on the cleansed training set by running python
train_on_cleansed_set.py -cleanser=CT
-dataset=cifar10 -poison_type=badnet
-poison_rate=0.01. The output should include
the clean accuracy (ACC) and attack success rate (ASR)
of the defended model in each training epoch.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Confusion Training is an effective approach to iden-
tify and remove poisoned samples in the training set.

Compared to other baseline defenses, Confusion Train-
ing consistently shows better robustness. This is proven
by the experiments (E1) in Sec 5.2 whose results are
reported in Table 1 and Table 2.

(C2): Confusion Training is generalizable to larger dataset
and extends beyond the vision domain. This is proven by
the experiments (E2) and (E3) in Sec 5.3 whose results
are reported in Table 4 and Table 5.

A.4.2 Experiments

(E1): [Major Experiments on CIFAR10 and GTSRB] [30
human-minutes + 100 compute-hour + 10GB disk]: Ex-
periment (E1) evaluates and compares Confusion Train-
ing’s effectiveness on CIFAR10 and GTSRB across 11+9
attacks with 11 baseline defenses, therefore proving our
first claim (C1). Experiment (E1) corresponds to our
reported results in Table 1 and Table 2.
How to: All the preparation steps have been stated
in Artifact Appendix A.3. We provide all neces-
sary commands to reproduce our results of (E1)
in misc/reproduce.md#major-results-on-cifar10-and-
gtsrb-table-1–table-2.

(E2): [Experiments on ImageNet] [1 human-hour + 160
compute-hour + 300GB disk]: Experiment (E2) eval-
uates Confusion Training’s effectiveness on ImageNet, a
larger vision dataset, and therefore provides support to
our second claim (C2). Experiment (E2) corresponds to
our reported results in Table 5.
How to: All the preparation steps have been stated
in Artifact Appendix A.3. We provide all neces-
sary commands to reproduce our results of (E2) in
misc/reproduce.md#imagenet-table-5.

(E3): [Experiments on Ember] [1 human-hour + 3 compute-
hour + 50 GB disk]: Experiment (E3) evaluates Con-
fusion Training’s effectiveness on Ember, a malware
classification task, also providing support to our second
claim (C2). Experiment (E3) corresponds to our reported
results in Table 4.
How to: All the preparation steps have been stated
in Artifact Appendix A.3. We provide all neces-
sary commands to reproduce our results of (E3) in
misc/reproduce.md#ember-table-4.

The expected outcome for the experiments above should
be close to our reported results. Our experiments involve
randomness in nature. Thus, the outcomes may have some
variances. Our table also reports the approximate standard
deviation of each result.

A.5 Notes on Reusability

We have already incorporated this artifact into a more
comprehensible backdoor research toolbox, available at
https://github.com/vtu81/backdoor-toolbox, which will be

https://www.tensorflow.org/install
https://github.com/Unispac/Fight-Poison-With-Poison/blob/master/other_cleansers/spectre/README.md
https://www.kaggle.com/competitions/imagenet-object-localization-challenge/data
https://github.com/elastic/ember
https://github.com/Unispac/Fight-Poison-With-Poison/blob/master/misc/reproduce.md#todo-before-you-start
https://github.com/Unispac/Fight-Poison-With-Poison/blob/master/data/cifar10/clean_label/setup.sh
https://drive.google.com/file/d/1vG44QYPkJjlOvPs7GpCL2MU8iJfOi0ei/view?usp=sharing
https://drive.google.com/file/d/1x01TDPwvSyMlCMDFd8nG05bHeh1jlSyx/view?usp=sharing
https://github.com/Unispac/Fight-Poison-With-Poison/blob/master/misc/reproduce.md
https://github.com/Unispac/Fight-Poison-With-Poison/blob/master/misc/reproduce.md#major-results-on-cifar10-and-gtsrb-table-1--table-2
https://github.com/Unispac/Fight-Poison-With-Poison/blob/master/misc/reproduce.md#major-results-on-cifar10-and-gtsrb-table-1--table-2
https://github.com/Unispac/Fight-Poison-With-Poison/blob/master/misc/reproduce.md#imagenet-table-5
https://github.com/Unispac/Fight-Poison-With-Poison/blob/master/misc/reproduce.md#ember-table-4
https://github.com/vtu81/backdoor-toolbox

constantly maintained in the foreseeable future.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

