
USENIX’23 Artifact Appendix:
Collide+Power: Leaking Inaccessible Data with Software-based Power

Side Channels

Andreas Kogler1 Jonas Juffinger1 Lukas Giner1 Lukas Gerlach2

Martin Schwarzl1 Michael Schwarz2 Daniel Gruss1 Stefan Mangard1

1Graz University of Technology 2CISPA Helmholtz Center for Information Security

A Artifact Appendix

A.1 Abstract
We present Collide+Power, a technique that extends software-
based power side channels to exploit the mere co-location of
attacker-controlled data with victim data within CPU buffers,
e.g., CPU caches. Collide+Power exploits that the collision
of these values exposes the Hamming distance, i.e., the bit
difference between the values, in the power domain. Col-
lide+Power can be mounted purely from software with any
power-related signal, e.g., power consumption interfaces or
throttling-induced timing variations.

The artifacts demonstrate the fundamental leakage enabling
Collide+Power. First, we analyze the power leakage of the
caches and evaluate our differential measurement method.
Second, we compute the performance of the Correlation
Power Analysis (CPA) for the raw channel and show that
we leak precise victim data. Third, we analyze the effects
of untargeted victim data within the cache lines. Finally, we
demonstrate the attack PoCs for Collide+Power.

All the PoCs are tested on Intel, and some of the PoCs were
also validated on AMD CPUs. Therefore, we only recommend
Intel x86 CPUs to test the artifacts, for the best case, an Intel
Core i7-8700K, Intel Core i9-9980HK, or Intel Core i9-9900.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

The artifacts do not perform any destructive steps, and the
worst risk for system security is a system freeze due to an
unavailable Model Specific Register (MSR) read in the kernel
module we provide. This should not happen if the system
is set up as described above. We verified on our machines
that the kernel module works as intended. If such a freeze
occurs, data loss of unsaved files could happen. Therefore,
we recommend saving all the work and doing a clean reboot
before conducting the experiments. The PoCs only target the
victim data of the provided programs. We do NOT target any

other data on the system, nor do we read the personal files
of the users. Furthermore, the power traces are saved locally
and are not shared with the authors, nor does the provided
framework send any information to us or any other server.

A.2.2 How to access

We provide the artifacts in a public GitHub repository. The
most recent version of the artifacts is provided here: https:
//github.com/iaik/collidepower . The stable version of
the artifacts with the included feedback from the artifact
evaluation is provided here: https://github.com/iaik/
collidepower/tree/ae .

A.2.3 Hardware dependencies

To reproduce the artifacts, we recommend a native bare-metal
Intel CPU. We strongly recommend an Intel Core i7-8700K,
Intel Core i9-9980HK, or Intel Core i9-9900 CPU, as these
CPUs showed the best leakage during our analysis (cf. Table
4 in the paper). For other CPUs not in the list, we designed
the PoCs for an 8-way L1 cache and a 4-way L2 cache design
with a pseudo-LRU replacement policy (cf. Section 4 in the
paper) which can be checked with the cpuid command. If the
cache uses a different number of ways, the PoCs need adap-
tion, or the leakage cannot be guaranteed. Finally, we require
an unfiltered Intel Running Average Power Limit (RAPL)
energy measurement interface, meaning that for CPUs that
support Intel Software Guard Extension (SGX), the Platypus
patches might be active and obfuscate the energy measure-
ments over the RAPL interface. Although we can exploit the
throttling-induced timing variations with SGX enabled, we
recommend disabling SGX in the bios to get unmitigated
RAPL readings and significantly increase the practicality of
the measurements.

A.2.4 Software dependencies

We require a Ubuntu 20.04 installation with Linux kernel
version 5.4. or 5.15. The best case would be a fresh installa-

https://github.com/iaik/collidepower
https://github.com/iaik/collidepower
https://github.com/iaik/collidepower/tree/ae
https://github.com/iaik/collidepower/tree/ae


tion. The newer 5.19 kernel no longer supports the nosmap
kernel argument, which is required for the initial leakage anal-
ysis. We detail this requirement in the provided readmes of
the repository. Furthermore, we require access to the RAPL
interface, which implies that the experiments must run on a
bare metal machine and should not be a virtual machine as
hypervisors block access to this interface. We require root
privileges to insert a kernel module for the PoCs and to config-
ure the Linux kernel boot command line. To build the PoC we
require a built-essentials setup with gcc and make, which we
list in the repositories readmes. Furthermore, we require the
PTEditor to modify page tables. To post-process the recorded
power traces, we use python3 with additional packages to
provide installation steps in the readmes. Finally, the system
should not be used during the measurements, i.e., no other
user must be logged in, and no program should be executed.
We recommend using ssh to deploy and connect to the given
machine.

A.2.5 Benchmarks

None.

A.3 Set-up

A.3.1 Installation

The artifacts use two components: First, a C++ program with
a kernel module performs the experiments and records the
power traces. Second, a post-processing python framework
to analyze the recorded traces. Installation of the required
packages is performed using the apt install command.
The python packages are installed with pip3. Finally, we
adapt some kernel boot parameters to make the analysis more
straightforward. For the detailed apt and python3 packages,
please follow the provided readmes in the repository.

A.3.2 Basic Test

We provide the basic leakage analysis in the repository, which
evaluates if the system exposes the exploited leakage. This
is the smallest possible basic test we implemented since we
cannot identify if the leakage exists on the system with other
means. For detailed instructions, please follow the provided
readmes in the repository.

A.4 Evaluation workflow

A.4.1 Major Claims

We provide artifacts verifying the following claims:
(C1): Using attacker-controlled data and victim data within

the memory hierarchy exposes the combined Hamming
distance leakage of both values in the power domain. We

prove this claim with the initial leakage analysis exper-
iment (E1) described in Section 4, whose results are re-
ported in Table 2.

(C2): Using the differential measurement technique im-
proves the correlation coefficients and the factors for the
Hamming distance. We prove this claim with the same
data as the initial leakage analysis (E1) using a different
post-processing technique (E2). The differential measure-
ment technique is described in Section 5, and the results
are reported in Table 3.

(C3): We evaluate the raw channel leakage rates using our
CPA and demonstrate that we can leak single nibbles as
described in Section 7.2, where the results are shown in
Figure 9. We prove this claim in the raw channel evalua-
tion (E3).

(C4): We show that unmasked data does not influence the
CPA success probability due to the differential measure-
ment. This claim is described in Section 7.2, and the re-
sults are shown in Figure 10. We prove this claim in the
victim data fill experiment (E4).

(C5): We show that Collide+Power with MDS-Power leaks
data that is actively used on the hyperthread. This claim
is described in Sections 6.1 and 7.3, and the results are
shown in Figure 12a. We prove this claim in MDS-Power
experiment (E5).

(C6): We show that Collide+Power observes a signal with
Meltdown-Power for data that is only accessible within
the Linux kernel. This claim is described in Sections 6.2
and 7.5; the results are shown in Figure 12a. We prove
this claim in the MDS-Power experiment (E6).

A.4.2 Experiments

(E1): [30 human-minutes + 10 compute-hour + <5GB disk]:
How to: Follow the general setup guide. Build the pro-
vided PoC with a defined macro. Let the PoC record the
power traces. Use the provided post-processing script to
obtain the results.
Preparation: Reboot the machine and connect via SSH
to the test machine. Build the program and the kernel
module. Load the kernel module, stop all other programs,
and follow the overall system preparation.
Execution: Execute the c++ program and pipe the output
into a CSV file. Let the script run for at least the specified
compute hours. Please note that the compute hours are
estimates as the program only records samples for anal-
ysis. The more samples are recorded, the more accurate
the analysis will get.
Results: Run the provided analysis script on the CSV.

(E2): [30 human-minutes + 0 compute-hours + <5GB disk]:
How to: Reuse the data from E1, the data for E2 is al-
ready included in the csv of E1.
Preparation: The same steps as E1.
Execution: None



Results: The same steps as E1.
(E3): [10 human-minutes + 5 compute-hour + <5GB disk]:

How to: Follow the steps of E1 but with another macro.
(E4): [10 human-minutes + 5 compute-hour + <5GB disk]:

How to: Follow the steps of E1 but with another macro.
(E5): [10 human-minutes + 20 compute-hour + <5GB disk]:

How to: Follow the steps of E1 but with another macro.
(E6): [10 human-minutes + 50 compute-hour + <5GB disk]:

How to: Follow the steps of E1 but with another macro.

Important Notes: The execution times for the experiments
are estimates based on our CPUs that show a high correlation
for the used interface. The longer the experiments is run, the
more data is collected, resulting in a more accurate analysis.
Furthermore, the experiments are designed to be terminated
(CTRL+C) after the desired amount of data is collected. Finally,
the created CSV files should always be valid during the exper-
iments, which allows them to be copied to a different machine
and be analyzed without the experiment to be stopped.

A.5 Notes on Reusability
The framework to analyze the traces is a general framework
that can be reused for plotting and performing correlation
analysis beyond Collide+Power.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


