
USENIX’23 Artifact Appendix: McFIL: Model Counting
Functionality-Inherent Leakage

Maximilian Zinkus
Johns Hopkins University

zinkus@cs.jhu.edu

Yinzhi Cao
Johns Hopkins University

yzcao@cs.jhu.edu

Matthew D. Green
Johns Hopkins University

mgreen@cs.jhu.edu

A Artifact Appendix

A.1 Abstract
Our Artifact submission encapsulates the version of our tool,
McFIL, which was used in the evaluation of the work. We
provide the source code in a dedicated GitHub repository
along with archived relevant dependencies. As configured,
this artifact is prepared to reproduce our evaluation results
in an offline setting rather than evaluate any online secure
protocols. Interested parties are welcomed to independently
install our software and evaluate it at their leisure, and to sub-
mit feedback, issues, and/or pull requests to the open source
project.

A.2 Description & Requirements
Our software tool is intended to perform an iterative analysis
of a target functionality. At each iteration, the tool gathers
available information (constraints within a SAT solver), gener-
ates new constraint systems based on a randomized sampling
algorithm, solves these SAT problems, and discovers an ap-
proximately greedy-optimal result. It then tests this result
against an “Oracle,” configured by default to be an offline in-
stantiation of the target functionality as a test harness stand-in
for an online secure protocol. Our test harness generates a
secret at the beginning of the loop (withholding it from the
main algorithm), and then iteratively discovers (partially or
completely) this secret by generating and executing queries
to the Oracle.

We evaluated McFIL on an Intel Xeon CPU E5-2695 v4 at
2.10GHz (72 threads) with 500 GB memory. Our evaluation
targeted relatively smaller benchmarks to enable randomized
repetition, and therefore did not stress this system to its limits.
Our evaluation used the following software dependencies:

• CryptoMinisat 5.8.0 https://github.com/msoos/
cryptominisat/releases/tag/5.8.0

• ApproxMC 4.0.1 https://github.com/meelgroup/
approxmc/releases/tag/4.0.1

• Z3 4.8.15 https://github.com/Z3Prover/z3/
releases/tag/z3-4.8.15

• louvain-community@8cc5382d https://github.
com/meelgroup/louvain-community

• arjun@407ea7f5 https://github.com/meelgroup/
arjun

• Python 3.8

A.2.1 Security, privacy, and ethical concerns

None directly, as our artifact is configured to evaluate func-
tionalities in an offline setting by default, requiring the user
to configure their target functionality. McFIL can be used
in an “online” setting to directly evaluate real-world secure
protocols and attempt to maximize leakage. We acknowledge
that this could potentially be used to exploit target protocols,
however, as a community we move forward and publish these
tools to improve understanding and defense with the assump-
tion that attackers will independently arrive at optimal attacks
in secret.

A.2.2 How to access

The source code can be accessed at our GitHub release URL:
https://github.com/maxzinkus/McFIL-Release/
releases/tag/release

A.2.3 Hardware dependencies

Please refer to Description & Requirements above. We be-
lieve that the artifact can be run on a lower-specification ma-
chine sufficiently well to observe functionality and perform
limited experiments (listed in Experiments) which indicate
our broader results without requiring them to be fully re-run
(which would take many compute-hours).

A.2.4 Software dependencies

Please refer to Description & Requirements above. We have
bundled these dependencies within a Docker image for easier
evaluation.

https://github.com/msoos/cryptominisat/releases/tag/5.8.0
https://github.com/msoos/cryptominisat/releases/tag/5.8.0
https://github.com/meelgroup/approxmc/releases/tag/4.0.1
https://github.com/meelgroup/approxmc/releases/tag/4.0.1
https://github.com/Z3Prover/z3/releases/tag/z3-4.8.15
https://github.com/Z3Prover/z3/releases/tag/z3-4.8.15
https://github.com/meelgroup/louvain-community
https://github.com/meelgroup/louvain-community
https://github.com/meelgroup/arjun
https://github.com/meelgroup/arjun
https://github.com/maxzinkus/McFIL-Release/releases/tag/release
https://github.com/maxzinkus/McFIL-Release/releases/tag/release


A.2.5 Benchmarks

This largely does not apply to our work. However,
the included target_funcs folder contains example tar-
get functionalities which we evaluate against in our pa-
per, and so these could be considered benchmarks in a
sense. These are automatically discovered and used when
their names are passed as command-line arguments to
our tool such as python3 main.py millionaires for
target_funcs/millionaires.py.

A.3 Set-up
Generally, in order to prepare a system for use with our tool,
two groups of dependencies must be installed. First, the ex-
ternal package dependencies listed in Description & Require-
ments, and second the python3 pip dependencies in the soft-
ware’s requirements.txt.

A.3.1 Installation

[Mandatory] Instructions to download and install dependen-
cies as well as the main artifact. After these steps the evalua-
tor should be able to run a simple functionality test.

1. Install the dependencies

• python 3.8: sudo apt install python3

• sudo apt install build-essential cmake
zlib1g-dev libboost-program-options-dev
libsqlite3-dev libgmp3-dev

• louvain-community: clone the repository and fol-
low build instructions

(a) cd louvain-community ; mkdir build
; cd build ; cmake .. ; make ; sudo
make install

• z3: clone the repository and follow build instruc-
tions

(a) cd z3 ; python scripts/mk_make.py
−−python ; cd build ; make ;
sudo make install ; pip install
z3-solver

• cryptominisat: clone the repository and follow
build instructions

(a) cd cryptominisat ; mkdir build ; cd
build ; cmake .. ; make ; sudo make
install ; sudo ldconfig

• arjun: clone the repository and follow build instruc-
tions

(a) cd arjun ; mkdir build ; cd build ;
cmake .. ; make ; sudo make install

• approxmc: clone the repository and follow build
instructions

(a) cd approxmc ; mkdir build ; cd
build ; cmake .. ; make ; sudo make
install

2. Fetch the software and install python dependencies

(a) clone or otherwise fetch the source of McFIL

(b) create a virtual environment python3 -m venv
venv

(c) install python dependencies source
venv/bin/activate ; pip install -r
requirements.txt

A.3.2 Basic Test

In order to determine if the dependencies are installed and
the environment configured, the following commands should
work without error with the virtual environment active:

• cryptominisat </dev/null

• approxmc </dev/null

• python3 -c ’import z3 ; z3.SolverFor’

Then, McFIL can be used to evaluate functionalities in the
target_funcs directory such as:

• python3 main.py millionaires

• python3 main.py sugarbeets

A.4 Notes on Reusability
McFIL is designed for use with functionalities of the user’s
choosing. A critical step in analyzing a novel functionality is
accurately encoding it in the input format that McFIL expects.
We recommend that users of our software use the existing
target_funcs given target functionality examples as a basis
(e.g. by copy-pasting them) to work from when defining new
targets. McFIL requires that the target be implemented both
“in the clear” (i.e. a correct python implementation of the
function under test) and in a format the solver can understand.
We provide solver.py, a support library which we hope
makes encoding easier. All existing examples use this library
and can be referred to for aid in its use.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Notes on Reusability
	Version


