
USENIX’23 Artifact Appendix:
DeResistor: Toward Detection-Resistant Probing for Evasion of Internet

Censorship

Abderrahmen Amich, Birhanu Eshete, Vinod Yegneswaran and Nguyen Phong Hoang

.1 Abstract

DeResistor is a research project that provides a system ex-
tension to protect Probing for Evasion of Internet Censorship
from detection. Specifically, it offers IP address protection for
internet users that are running automated tools for censorship
measurments and evasion (e.g. Geneva).

In this artifact, we provide an instance of DeResistor im-
plemented on top of Geneva code: https://github.com/
Kkevsterrr/geneva. DeResistor leverages Machine Learn-
ing techniques to model a censor-side flow-level detector
and use it to guide Geneva genetic evolution towards more
detection-resilient evasion strategies. Additionally, DeResis-
tor introduces guided-pauses of censorship evasion attempts
and interleaving them with normal user-driven network activ-
ity to confuse IP-level detection.

.2 Description & Requirements

.2.1 Security, privacy, and ethical concerns

For Docker experiments, evaluators have no risk to execute
this artifact. However, real-world experiments are intended to
test DeResistor in censored regimes (e.g., China, India, etc).
Evaluators should not try to reproduce these experiments in
one of these countries using there personal machines. Instead,
they need to get access to vantage points that are remotely
controllable and do not require the involvement of real user
credentials that may identify individuals.

.2.2 How to access

Our artifact can be accessed via https://github.com/
um-dsp/DeResistor.

.2.3 Hardware dependencies

No specific Hardware dependencies are needed for docker
experiments. However, real-world experiments have to be
performed in censored regimes. If needed, we can provide
you with ssh access to one of our vantage points in China.

.2.4 Software dependencies

DeResistor has been developed and tested on Ubuntu. How-
ever, it should support Centos or Debian-based systems. Sim-
ilar to Geneva, due to limitations of netfilter and raw sockets,
this code does not work on OS X or Windows at this time and
requires python3.6. To reproduce In-situ experiments, docker
has to be properly installed.

.2.5 Benchmarks

None

.3 Set-up

.3.1 Installation

• Install netfilterqueue dependencies:

$ sudo apt-get install build-essential
python-dev libnetfilter-queue-dev
libffi-dev libssl-dev iptables python3-pip

• Create a new python3.6 environment and install Python
dependencies:

$ python3 -m pip install -r requirements.txt

• If needed, for Debian 10 systems, you can install netfil-
terqueue directly from Github:

$ sudo python3 -m pip install --upgrade -U
git+https://github.com/kti/python-
netfilterqueue

• If needed, on Arch systems, you can make liblibc.a avail-
able for netfilterqueue:

$ sudo ln -s -f /usr/lib64/libc.a
/usr/lib64/liblibc.a

• After you make sure you install and run docker on your
system use the dockerfile provided in /docker folder to
build the base image:

$ sudo docker build -t
base:latest -f docker/Dockerfile .

1

https://github.com/Kkevsterrr/geneva
https://github.com/Kkevsterrr/geneva
https://github.com/um-dsp/DeResistor
https://github.com/um-dsp/DeResistor


.3.2 Basic Test

• to manually run/inspect the docker image to explore the
image, run:

$ sudo docker run -it base

• To check that all docker containers and harpoon are run-
ning correctly, We can run the genetic algorithm with
small number of Individuals (--population) and
Generations (--generation):

$ sudo /path/to/python_environment/bin/python
evolve.py --censor censor3 --server
forbidden.org -- log debug --workers 1
--runs 1 --population 5 --
generation 1 --jump 1

[To add: Output description]

.4 Evaluation workflow

.4.1 Major Claims

(C1): DeResistor offers detection-resilience to Geneva’s
probing traffic. This is discussed in §6.2. We record
the flow-level detection rate and IP-level detection result
of DeResistor and Geneva in Table 1.

(C2): Effectiveness of DeResistor to produce working strate-
gies that can evade the censor.

.4.2 Experiments

Experiments (E1) and (E2) reproduce results related respec-
tively to major claims (C1) and (C2). If the evaluators do not
have access to controlled vantage points in China, India or
Kazakhstan, in order to reproduce results in the first 3 rows
of Table 1 and working strategies in Table2, they can rely on
the docker experiments to reproduce results in rows 4-8 in
Table 1 (addresses (C1)) and monitor the traffic logs of newly
generated strategies that they have found against the mock
censors to address (C2). If evaluators are able to generate
strategies against real-world censors (e.g., startegies in Table2
in the paper), they can test those strategies directly against
the censor using Geneva engine.
(E1): [Testing Detection-Resilience] [30 human-minutes +

1 to hours compute-hour according to the considered
number of individuals and generations. 2GB disk should
be sufficient to store all the results]:
We run DeResistor vs. one of the 11 mock cen-
sors, while enabling real-time detection using
--real-time-detection. During execution time, we
keep track of the Detection Rate after every strategy
evaluation, displayed to the screen. Additionally, we
check whether the real-time detector blocks the IP
address and stops Geneva/DeResistor training.

How to: We start by running Geneva without DeRe-
sistor protection, using --Geneva to test its flow-level
and IP-level detection. Then, we run DeResistor and
compare the results between both runs. We provide more
detailed description later in the Execution paragraph.

Preparation: To prepare this experiment, we need to
make sure all Setup points in §3 are taken care of.
You can ignore the following if you are running only
docker experiment: – For real-world experiments,
You need to have internet access. For experiments
in china, we need to first bypass DNS poisoning as
exaplained in §6.1 in the paper, paragraph 3. For
Linux systems we can point the URL hrw.org to its
correct IP 23.185.0.2, by adding the line 23.185.0.2
www.hrw.org to /etc/hosts. Similarly, to run this ex-
periment in Kazakhstan we need to add 93.184.216.34
www.youporn.com to /etc/hosts file.

Execution: • Running Geneva without DeResistor
protection.
$ sudo /path/to/python_environment
/bin/python evolve.py --censor censor1
--server forbidden.org -- log debug
--workers 1 --runs 1 --population 200
--generation 10 --Geneva
--real-time-detection

Before performing a second run make sure all
docker containers related to Geneva are killed using:
"sudo docker kill $(sudo docker ps -q)".
The execution automatically stops after testing
only two flows which is a evidence of IP-level
detection (reported in Table1 in the paper). To
reproduce Geneva’s flow-level detection value, we
need to complete all Geneva training by disabling
--real-time-detection (remove it from the
command) to avoid early blocking of Geneva. After
every iteration, we observe how The detection Rate
value changes to reach ≈ 99% as reported in Table1
in the paper rows 4-8.

For real-world experiments (e.g., China):
$ sudo /path/to/python_environment/bin
/python evolve.py --external-server
--server www.hrw.org --test-type http
--log debug --workers 1 --runs 1
--population 500 --generation 20
--real-time-detection
--local-model rfc_gfw.joblib
--censor-model rfc_gfw2.joblib
--Geneva

www.hrw.org is not necessarily censored outside of
China. For India, we can use bannedthought.net,
xnxx.com, vidwatch.me and for Kazakhstan, we

2



can use youporn.com. For india and Kazakhstan
experiments we can use more appropriate mod-
els provided in /ML detectors folder, respectively
called rfc_india.joblib and rfc_kz.joblib to
update -local-model and -censor-model. Be-
fore performing a second run make sure you reset
the iptables: "sudo iptables -F".

• Running DeResistor:
$ sudo /path/to/python_environment
/bin/python evolve.py --censor censor1
--server forbidden.org -- log debug
--workers 1 --runs 1 --population 200
--generation 10 --jump 1
--real-time-detection

Before performing a second run make sure all
docker containers related to Geneva are killed using:
"sudo docker kill $(sudo docker ps -q)".
According to Table 1 in the paper, DeResistor
should be able to complete its training without IP-
level detection. Similar to the previous run, we also
track the changes occurred on the Detection Rate as
it regularly displays in the console.
For real-world experiments, we can use the same
command as before without --Geneva and adding
--jump 1. Similarly, we need to flush the iptables
after each run with: "sudo iptables -F".

To reproduce results against all 11 mock censors, we
can run the same commands using a different censor
(e.g., --censor censor2, etc).

Results: Results of every run are stored in the
folder /trials/[date-and-time-of-execution].
It contains , network traces in /packets and their
csv counterparts after features extraction in /csv
(using only the client-side packets). All generated
strategies are located in the final hall.txt file (e.g.,
/generations/hall9.txt) with their fitness values.
Strategies with the highest fitness values are most likely
to evade the censor.

As illustrated before, detection resilience results should
be observable during run-time. Particularly, if the
program raises a detection exception, then an IP
detection is observed. Additionally, the flow-level
detection rate is regularly displayed during run-time
as Detection Rate. We also store the flow-level
detection results of all flows in preds.csv. We can
re-compute the final value of the flow-level detection
rate by counting the percentage of zeroes (0: detected as
Geneva flow) compared to all flow-level predictions.

(E2): [Evasion Effectiveness:] [1 to 2 human-hours + 0
compute-hour. 2GB disk should be sufficient to store
all the results]: In this experiment, we leverage results

stored in previous executions of DeResistor and Geneva
to select strategies that are effective for censorship
evasion.

How to: We inspect collected strategies of DeRe-
sistor in /generations/hall[final].txt located
in the folder corresponding to the DeResistor run.
For real censors (e.g., China), we can evaluate the
effectiveness of each strategy against the censor using
Geneva startegy-testing Engine. More details about
testing a strategy with Geneva engine is provided
in Execution. You can also refer to Geneva docu-
mentation related to how to run a strategy in https:
//geneva.readthedocs.io/en/latest/intro/
gettingstarted.html#running-a-strategy. For
startegy generated against mock censors, We cannot
evaluate them using Geneva engine. Instead we can
manually inspects the logs of the most fit strategies
and check whether the client finally had access to the
forbidden server (evaded censorship). We note that, the
most fit startegies are the ones that have the highest
fitness values which can be negative in case we run
DeResistor.
Preparation: To perform this experiment we need to
generate appropriate results files using commands de-
scribed in (E1). Similar to (E1), to test strategies against
real censors (e.g. GFW), you need access to controlled
vantage points in the desired country.
Execution: • Evaluate a strategy against real cen-

sors: To evaluate a strategy that you selected, you
first need to run Geneva engine to apply the strategy
later on using:

$ sudo /path/to/python_environment
/bin/python engine.py --server-port 80
--strategy "[your-strategy]" --log debug

In a separate console (e.g. terminal), you can per-
form curl commands to attempt connections to a
censored website. For instance, in china you can
try:

$ curl -L --no-keepalive --local-port
[random-port-number] --connect-to
::23.185.0.2: 'http://hrw.org' -D -

The port number has to be changed across runs to
avoid Resisdual censorship performed by GFW (ths
is discussed in the paper in §6.1 paragraph 3.
To automate the strategy evaluation process, we
provide a script in /test.py that evaluates a list
of strategies 30 times and stores their success rate
in success_rate.txt. Using this script, we can
reproduce results in Table2.

Results:

3

https://geneva.readthedocs.io/en/latest/intro/gettingstarted.html#running-a-strategy
https://geneva.readthedocs.io/en/latest/intro/gettingstarted.html#running-a-strategy
https://geneva.readthedocs.io/en/latest/intro/gettingstarted.html#running-a-strategy


.5 Notes on Reusability
[Optional] This section is meant to optionally share addi-
tional information on how to use your artifact beyond the
research presented in your paper. In fact, a broader objective
of an artifact evaluation is to help you make your research
reusable by others.

You can include in this section any sort of instruction that
you believe would help others re-use your artifact, like, for
example, scaling down/up certain components of your artifact,
working on different kinds of input or data-set, customizing
the behavior replacing a specific module/algorithm, etc.

4


	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability

