
USENIX’23 Artifact Appendix: <PET: Prevent Discovered Errors from
Being Triggered in the Linux Kernel>

Zicheng Wang*

wzc@smail.nju.edu.cn
Nanjing University

Yueqi Chen
yueqi.chen@colorado.edu

University of Colorado Boulder

Qingkai Zeng
zqk@nju.edu.cn

Nanjing University

A Artifact Appendix

A.1 Abstract
This artifact is applying for an Artifacts Available badge,
an Artifacts Functional badge, and an Results Reproduced
badge. It provides two main artifact sets for evaluators to re-
produce PET. The first artifact set, detailed in Github, enables
constructing PET from scratch, and the second artifact set in-
cludes kernel images and a root filesystem which allow the
evaluator to reproduce our results in an isolated environment
without any destructive steps.

Both artifact sets include Proof of Concept (PoC) programs
and exploits of vulnerabilities used as test cases and eBPF
programs that enable PET protection. After installing the eBPF
program, the evaluator can execute the PoC programs and
exploits to access the effectiveness of PET, by observing that
the error triggering is prevented.

Besides we include user guidance in the first artifact set to
help readers understand the design of PET, and develop their
own eBPF programs for more error types that have not been
covered in PET so far.

In this appendix, we will provide necessary instructions for
evaluators to reproduce PET as well as an example along with
screenshots for illustration.

A.2 Description & Requirements
In this section, we first describe whether reproducing our
artifacts will risk the evaluator’s machine security, followed
by approaches to accessing our artifacts. Then, we describe
hardware dependencies and software dependencies before
listing the benchmarks.

A.2.1 Security, privacy, and ethical concerns

PET aims to protect the OS kernel through the eBPF ecosys-
tem. To enable PET, the kernel needs additional eBPF helper
functions before being compiled and installed, which is de-
structive to some extent. Therefore, to make evaluators feel
safe, we prepared a kernel image and a root filesystem for

*The work was done while visiting the University of Colorado Boulder.

evaluators. As such, evaluators can download the image and
reproduce our results in an isolated environment, ensuring the
safety and privacy of the host machine. The access for the
image can be found in § A.2.2.

Furthermore, it is important to note that all vulnerabilities
and proof-of-concept programs included in the artifact are
publicly available and have been addressed in the mainstream
kernel. Therefore, there are no security, privacy, or ethical
concerns regarding the open-source community. The artifact
builds upon resolved issues, and its purpose is to contribute
to the knowledge and advancement of the field.

A.2.2 How to access

The complete artifacts are available in a public Github
Repo https://github.com/purplewall1206/PET, which
includes three main components: eBPF programs and corre-
sponding scripts for evaluation, source code developed in PET,
manuals and examples for evaluators to quickly understand
the key idea of PET. Due to the space limit, we cannot list
all details from building kernel to compiling eBPF programs
to enable PET protections. Therefore, the repo also includes
elaborate instructions for evaluators to follow.

The artifacts provided in the Github Repo are sufficient
for evaluators to reproduce. However, as we mentioned in
§ A.2.1, the reproducing procedure includes destructive steps.
To this end, we additionally provide a root filesystem and a
compiled kernel image, which are in https://tinyurl.com
/2428uac5.

A.2.3 Hardware dependencies

To completely reproduce PET, we recommend the following
minimum hardware configurations: ❶ an Intel CPU with VT-
X virtualization feature, ❷ 8GB or larger memory, and ❸ at
least 100GB disk space.

A.2.4 Software dependencies

It is preferable to perform the evaluation on the Ubuntu Linux
distro, especially the 20.04 desktop which is the same OS for
PET development. The OS is supposed to include essential
packages such as debootstrap, qemu-system-x86_64, open-ssh,

1

https://github.com/purplewall1206/PET
https://tinyurl.com/2428uac5
https://tinyurl.com/2428uac5


and wget. These packages are necessary for setting up the
evaluation environment and conducting runtime evaluations.

Besides, it is advised not to utilize Docker for the evalua-
tion process because the artifact necessitates the use of two
separate terminals - one for executing the Proof of Concept
programs and another for displaying the output of the eBPF
programs.

A.2.5 Benchmarks

The Proof of Concept programs for vulnerabilities used as test
cases have been collected and provided in the Github Repo.
We used Phoronix-benchmark for performance measurement
which is publicly available online.

A.3 Set-up
In this section, we focus on the installation and testing of
PET using the kernel image and a root filesystem we provided
for the sake of ethics (§ A.2.2). The evaluator can boot up
the kernel using QEMU. Due to the space limit, we move the
detailed instruction for reproducing PET from scratch in the
Github Repo.

A.3.1 Functional

For the functional evaluations, we have implemented a
evaluate.sh script to set up the environments. including: ❶
use apt to install required software mentioned in A.2.4, ❷
pop up 2 terminals, terminal 1 start the virtual machine, and
terminal 2 connect to the virtual machine with ssh, and ❸
copy the test scripts into virtual machine.

A.3.2 Reproduce

For the reproducible evaluations, we first present a
phoro-run.sh script to reproduce all performance results. We
also present an instruction for generating new BPF preven-
tion programs from scratch and evaluate it in the also in the
functional testing environment.

A.3.3 Installation

None.

A.3.4 Basic Test

After evaluators pull the github repository and run evaluate.sh,
there will be 2 terminals pop up. In figure 1, the left terminal
1 boots up the virtual machine, and waits to be logged in,
and the right terminal 2 has already logged in through ssh.
Evaluators can login the virtual machine with the user name
root and no password is needed. After that, evaluators can
run ls command on either terminal, and there will be three
directories, including bpf, PoCs, scripts.

The bpf directory contains all compiled BPF prevention
programs. The POCs directory contains all compiled proof-of-
concepts programs that can trigger the vulnerabilities. The
scripts directory contains evaluation scripts that need evalua-
tor to execute in the virtual machine.

A.4 Evaluation workflow

As described in Section 5 (Error-dependent Prevention Poli-
cies) of our paper, the PET framework provides support for
preventing five distinct types of errors from being triggered.
To evaluate the functional of each type of kernel error preven-
tion, the artifact includes five BPF prevention programs.

During the evaluation process, the virtual machine will
initiate the execution of these five BPF protection programs
immediately after boot-up. Subsequently, the evaluator can
proceed to run the proof-of-concept tests for the correspond-
ing five vulnerabilities. The BPF prevention programs are de-
signed to intercept and bypass the error-prone sections within
the kernel. As a result, the system will continue to function
smoothly, ensuring the stability and integrity of its operations.

After the functional evaluation, evaluators can also repro-
duce the performance overhead, and try to add new BPF pro-
grams to prevent the other vulnerabilities from being trig-
gered.

A.4.1 Major Claims

C1: The 5 types of kernel errors (integer overflow, out-of-
bound, use-after-free, uninitialization, data race) will be pre-
vented. C2: The system will keep functioning after the errors
are prevented from being triggered.

A.4.2 Experiments

Functional: First of all, evaluators need to change di-
rectories to /root/scripts in both terminals, then execute
start-bpf-progs.sh to start all 5 BPF programs in the ter-
minal 2. After that, output of the 5 BPF programs will be
printed in the terminal 2. We have also prepared a video
to demonstrate the evaluation workflow on Youtube https:
//www.youtube.com/watch?v=0BVsULXT0xI.
(E1): Test if the BPF program can prevent an integer overflow

vulnerability CVE-2017-7184 from being triggered.
Execution: execute test-CVE-2017-7184.sh in terminal 1
Results: There will be killed signal in terminal 1, and
there will be a report ====CVE-2017-7184 is happened====

in terminal 2.
(E2): Test if the BPF program can prevent an out-of-bound

vulnerability CVE-2016-6187 from being triggered.
Execution: execute test-CVE-2016-6187.sh in terminal 1
Results: There will be killed signal in terminal 1, and
there will be a report ====CVE-2016-6187 is happened====

in terminal 2.

2

https://www.youtube.com/watch?v=0BVsULXT0xI
https://www.youtube.com/watch?v=0BVsULXT0xI


Figure 1: Gnome terminals, terminal 1 boot up the virtual machine, terminal 2 connect to the virtual machine through ssh.

Figure 2: Outputs of the BPF prevention programs in terminal 2.

(E3): Test if the BPF program can prevent an use-after-free
vulnerability CVE-2021-4154 from being triggered.
Execution: execute test-CVE-2021-4154.sh in terminal 1
Results: Because of the quarantine & sweep policy, the
dangling pointer of a use-after-free vulnerability will
be quarantined, the vulnerability will not be triggered.
Proof-of-concept in terminal 1 cannot trigger the vulner-
ability, and terminal 2 will report dangling pointers are
quarantined.

(E4): Test if the BPF program can prevent an uninitializa-
tion vulnerability kmsan-4b28366af7d9 from being trig-
gered.
Execution: execute test-kmsan_4b28366af7d9.sh in ter-
minal 1
Results: The vulnerability is triggered in terminal
1 under an conservative check policy, it means that
the BPF program will catch the uninitialization mem-
ory but not kill the process. There will be reports
====kmsan-4b28366af7d9 is happened==== in terminal 2.

(E5): Test if the BPF program can prevent a data race vulner-
ability kcsan-dcf8e5633e2e from being triggered.
Execution: KCSAN does not provide proof-of-concept,
so no proof-of-concept is executed in terminal 1.
Results: The BPF program detector_kcsan_dcf8e5633e2e

will be keep checking if the vulnerability kcsan-
dcf8e5633e2e is being triggered.

The evaluation results, as depicted in Figure 2, demonstrate
the successful prevention of various vulnerabilities. Start-
ing from the top, the artifact effectively prevent uninitialized
variables, integer overflows, and out-of-bound vulnerabilities.

Additionally, the artifact identifies and quarantines the poten-
tial dangling pointers of use-after-free vulnerabilities. It is
important to note that evaluators have the freedom to execute
additional commands on terminal 1 during the evaluation pro-
cess. Despite the execution of these commands, the system
remains functional and unaffected by the errors.

Reproducible The reproducible evaluation includes 2 part,
the performance test and add new BPF prevention programs.
(E1) : test performance overhead when BPF prevention pro-

grams protect the system.
Execution: (about 2 hour for each performance test, 14
hours in total) execute the phoro-run.sh scripts in the
terminal 1, and 7 seperate performance tests are queued
to be executed, including the vanilla, system protected
by 5 BPF program individually and simultaneously.
Results: execute phoronix-benchmark

↪→ start-result-viewer

(E2) : add new BPF program to prevent new
Execution: (about 10 minutes) We present an instruc-
tion including a demo(a use-after-free), executor can
follow the guidance to extract the sanitizer report and
generate a new program. Similar to the functional evalu-
ation, evaluators can also evaluate the effectiveness of
the new added BPF program.
Results: After execute proof-of-concept in terminal 1,
there will be report that dangling pointers are quaran-
tined in terminal 2.

The results show that artifact can reproduce the perfor-
mance overhead and easy to add new BPF programs for up-
coming kernel vulnerabilities.

3


	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Functional
	Reproduce
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments



