
VulChecker: Graph-based Vulnerability Localization in Source Code

Yisroel Mirsky1, George Macon2, Michael Brown3, Carter Yagemann4

Matthew Pruett3, Evan Downing3, Sukarno Mertoguno3 and Wenke Lee3

1Ben-Gurion University of the Negev
2Georgia Tech Research Institute
3Georgia Institute of Technology

4Ohio State University

A Artifact Appendix

A.1 Abstract

In this document we describe the artifact for our vulnerabil-
ity detection tool VulChecker. The artifact consists of source
code, datasets and pre-trained models for reproducing the re-
sults from the USENIX’23 paper. This document we only
provide the steps requires to demonstrate that the tool is avail-
able and functional.

A.2 Description & Requirements

To reproduce the results from the paper you will need to use
the source code and assets available on GitHub. There you
will find detailed instructions on how to install the tool or
acquire the VM which has the tool already installed. You will
also find a detailed guide on how to use the the entire pipeline
in your own projects.

You can also find our implementation of the baseline
VulDeeLocator here:
https://github.com/evandowning/VulDeeLocator

A.2.1 Security, privacy, and ethical concerns

There are no risks in executing our tool since it is a vulnera-
bility detector. However, the provided datasets are deviates of
projects collected from GitHub. Therefore, users should con-
sider that the projects may contain security risks if executed
and users should note the respective software licenses.

A.2.2 How to access

To gain access to the source code an assets, please check out
our GitHub repository at https://github.com/ymirsky/
VulChecker

VulChecker uses a number of components that must be
installed in order for it to operate. Here is a list of components
of Vulchecker which we maintain in seperate repositories:

• VulChecker: the core library for processing data and
training models. All operations with this library are
through a command line tool called hector. https:
//github.com/ymirsky/VulChecker.git

• LLAP: a plugin to LLVM for extracting ePDGs
from cmake C/C++ projects. https://github.com/
michaelbrownuc/llap

• Structure2Vec: our pyTorch implimentation of the graph-
based neural network by Dai et al. https://github.
com/gtri/structure2vec

• vulchecker-misc: a collection of helpful (optional)
scripts, such as automatic labeling Juliet samples. https:
//github.com/michaelbrownuc/vulchecker-misc

Information on where the VM and datasets are hosted can
be found the main VulChecker repo.

A.2.3 Hardware dependencies

To execute the tool on the VM, you will need a host system
with at least 16GB RAM. If you intend to preprocess the
raw datasets yourself, you will need significantly more RAM
(128GB). You can use the VM to train a model on a CPU, but
it is highly recommended to use a system with a cuda GPU
(we used an NVIDIA TITAN RTX with 24GB RAM). The
VM does not come with cuda installed. Therefore, if you want
GPU acceleration, you will either need to (1) install the vGPU
and cuda libraries on the VM or (2) make a clean installation
on a cuda enabled system with the instruction from the repo.

A.2.4 Software dependencies

To make a clean install of the detection tool (instead of using
the VM), you will need a Linux system with Ubuntu Ubuntu
20.04 and python 3.8.10.

1

https://github.com/evandowning/VulDeeLocator
https://github.com/ymirsky/VulChecker
https://github.com/ymirsky/VulChecker
https://github.com/ymirsky/VulChecker.git
https://github.com/ymirsky/VulChecker.git
https://github.com/michaelbrownuc/llap
https://github.com/michaelbrownuc/llap
https://github.com/gtri/structure2vec
https://github.com/gtri/structure2vec
https://github.com/michaelbrownuc/vulchecker-misc
https://github.com/michaelbrownuc/vulchecker-misc


A.2.5 Benchmarks

Although we provide source code to the baselines used in the
paper, we do not provide end-to-end instructions for running
them on our datasets at this time. Please follow our VulDee-
Locator repo for updates.

A.3 Set-up
For a quickstart, download the VM (link in the README.md
of from the VulChecker repo). Configure the VM to have at
leag 16GB RAM (prefferably more).

A.3.1 Installation

For a clean installation, follow the clean-install steps provided
in the repo’s README.md. Note that a clean installation can
save several hours since LLVM must be compiled.

A.3.2 Basic Test

Once you have booted the VM, you will find three demo
scripts on the desktop. These scripts are also available in
demos/ in the repo if you performed a clean-install. These
scripts which demonstrate how the tool can be used on a
single project provided (Avian) for CWE-121:

1. Convert a C or C++ project into a set of ePDGs

2. Augment datasets (requires large RAM)

3. Train a model

4. Make predictions with model

You can run them to verify that the tool has been installed
successfully.

A.4 Evaluation workflow
To use the tool, a separate model and dataset must be prepared
for each CWE (190, 121, 122, 415, 416).

There are three ways to reproduce the results from the
paper, depending on how far back into the pipeline you want
to go: (1) start from raw source code projects, (2) start from
preprocessed datasets, (3) start from preprocessed datasets
and pretrained models.

The first approaches can take days to perform. Therefore
we recommend following the third approach.

(1) For working with the Raw source code files: Follow the
instructions in the repo using the diagram provided there. To
get the data, follow the link provided in the repo’s README.
The training data is the ‘clean-wild‘ projects augmented with
the Juliet projects. The test data is the ‘wild-labeled‘. The
parameters used to train our models can be found in the
models/trained_on_aug/ directories next to each model.

(2) For working with the preprocessed files, the
training data for CWE<id> can be found here:
/CWE<id>/proc_graphs/wild_augmented-labels.
Use the file that has the format
CWE<id>_*_clean_<N>_<P>.json.gz
which is the dataset after removing a ratio of <N> negative
and <P> positive manifestation points.

The test data (projects with CVEs) can be found here:
/CWE<id>/proc_graphs/*/combined. Use the file that has
the format
CWE<id>_*_clean_<N>_<P>.json.gz

(3) To start with preprocessed datasets and pretrained mod-
els, follow the instruction in (2) and model files stored in
models/

A.4.1 Major Claims

(C1): The provided VulChecker tool is functional and can
be used to detect vulnerabilities/bugs in source code.

A.4.2 Experiments

(E1): Tool Execution [30 human-minutes + 3 compute-hour
+ 200GB disk + 128GB RAM]:
How to: Download the provided VM and allocate the re-
quired RAM to the machine. Run the three demo scripts
on the VM’s desktop. The demos will operate on a single
project (Avian) for CWE-121.
Results: The final script should output a csv listing the
likelihoods for each potential manifestation point is an
actual bug/vulnerability for CWE-121.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

2

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


