
USENIX’23 Artifact Appendix:
Speculation at Fault: Modeling and Testing

Microarchitectural Leakage of CPU Exceptions

A Artifact Appendix

A.1 Abstract

The goal of this artifact is to validate the microarchitectural
leakage of CPU exceptions against the formal leakage mod-
els we proposed in the paper (named contracts). Concretely,
this means reproducing a representative subset of the results
described in Table 1 of the paper using our tool Revizor. The
exceptions we tested form the rows of this table and the con-
tracts are given as the columns. The contracts are ordered
according to permissiveness, i.e., CT-SEQ does not allow any
transient leakage, whereas CT-VS-All allows arbitrary specu-
lative values.

Revizor is a random testing tool, i.e., all test cases are
generated randomly. While we observed stable results during
our experiments, we therefore cannot 100% guarantee that all
results are reproduced within the indicated time frame.

The artifact of this paper includes the source code of Revi-
zor, a set of scripts to run the experiments, and a description
of how to run them.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

Revizor includes a kernel module that disables the hardware
prefetcher and initializes the performance counters. The tool
also overwrites the OS-defined IDT to suppress the handling
of exceptions on the running core. This may affect other jobs
running on your system.

Revizor executes randomly generated programs in kernel
space. These programs that are intended to throw exceptions.
Even though the executor provides a stable and isolated envi-
ronment, it may adversely affect the stability of your system.

A.2.2 How to access

The artifact is available on GitHub at https:
//github.com/vusec/SpeculationAtFault-AE/tree/
cf2fa27ff5145a2dedfa8d4302a16d6e32aa5581

A.2.3 Hardware dependencies

Evaluating this artifact requires at least one physical machine
with root access. Ideally, the reviewer has access to both one
machine with Intel (KabyLake or CoffeeLake) and AMD
(Zen+ or Zen3) CPU. If only one such machine is available,
the experiments can still be reproduced for just that machine.
For AMD Zen2, we expect to obtain the same results as for
Zen3. Remote access to some of our machines may be granted
upon request. To obtain stable results, the machine(s) should
not be actively used by other software.

A.2.4 Software dependencies

• Linux v5.1+ and Kernel Headers

• python 3.9+, python3.9-venv, and pip

A.2.5 Benchmarks

None

A.3 Set-up
In this section, we provide a short version of the installation
and configuration steps required to prepare the environment
and run Revizor. Please refer to the README file of the
repository for detailed installation steps.

A.3.1 Installation

1. Clone the repository.

2. Install software requirements:
on Ubuntu

> sudo apt install linux-headers-$(uname -r)

> sudo apt install python3.9 python3.9-venv

3. Install Revizor python package: In the base directory:
on Ubuntu

> cd revizor

> python3 -m venv ∼/venv-revizor

> source ∼/venv-revizor/bin/activate

https://github.com/vusec/SpeculationAtFault-AE/tree/cf2fa27ff5145a2dedfa8d4302a16d6e32aa5581
https://github.com/vusec/SpeculationAtFault-AE/tree/cf2fa27ff5145a2dedfa8d4302a16d6e32aa5581
https://github.com/vusec/SpeculationAtFault-AE/tree/cf2fa27ff5145a2dedfa8d4302a16d6e32aa5581

> pip install revizor_fuzzer-1.2.3-py3-none-any.whl

> cd -

4. Check installation:
> rvzr # Should print the following:

usage: rvzr {fuzz,analyse,reproduce,minimize,

generate,download_spec} ...

rvzr: error: the following arguments are

required: subparser_name

5. Install the executor:
> cd revizor/executor

> make uninstall

> make clean

> make

> make install

> cd -

6. Download the ISA spec:
> rvzr download_spec -a x86-64 -extensions BASE

SSE SSE2 CLFLUSHOPT CLFSH MPX -outfile base.json

A.3.2 Basic Test

From the base directory, on Intel CPU, cd into intel/. On
AMD CPU, cd into amd/.

Run the basic test:
> rvzr fuzz -s ../base.json -c basic/seq-BP.yaml -i

10 -n 100

This command will start a small fuzzing campaign testing
the Breakpoint exception with 100 test cases, each tested with
10 inputs. The command is expected to terminate without
reporting a violation.

A.4 Evaluation workflow
The main results are summarized in Table 1 of the original
paper. The evaluation workflow is designed to validate our
leakage models. The list of experiments needed to do so
depends on the CPU microarchitecture.

A.4.1 Major Claims

For each combination of exception and architecture, the fol-
lowing are the least permissive of our contracts that model
the transient leakage induced by that exception.
C1 #PF complies with CT-VS-All on Intel Kaby Lake, with

CT-VS-NI on Intel CoffeeLake, and with CT-DH on
AMD.

C2 #GP complies with CT-VS-CI on AMD. On Intel, #GP does
not satisfy any contract.

C3 (Intel only) #BR complies with CT-DH. (E5)

C4 ucode-assists comply with CT-SEQ on AMD, with CT-
VS-All on Intel Kaby Lake, and with CT-VS-NI on Cof-
feeLake.

C5 #DE complies with CT-VS-Ops on Intel and AMD Zen3,
and with CT-VS-All on AMD Zen+.

C6 #UD, #DB, and #BP comply with CT-SEQ on all machines.

A.4.2 Experiments

Our experiments serve two purposes: (1) validating our claims
regarding which contract satisfies which exception on which
machine, and (2) confirming Revizor’s effectiveness in gener-
ating counterexamples. For each combination of CPU archi-
tecture and exception, we therefore propose one experiment
that validates the correct contract and one experiment that
finds a counterexample for the next more restrictive contract
(if one exists).

In the interest of time, we run each experiment for 12h or
until a violation is found. The timeout can be increased with
the timeout option we included in the scripts. For our paper,
each experiment ran for 24h. Remember though that Revizor
is based on random testing, it is thus possible that a violation
is not found within 12h. If this is the case, we suggest to
repeat the experiment and increase the timeout.

How-to. We split our experiments according to the type of
machine under test. Scripts for the experiments are grouped
into a directory for Intel and one for AMD. For exam-
ple, the scripts to reproduce Intel E1 are stored inside
./intel/experiment_1/. Inside each directory, there is one
run.sh script to start the experiment. An optional timeout
(given in seconds) can be set with the - -timeout option (e.g.,
./run.sh - -timeout=86400 for a 24h timeout).

Running the script will create a subdirectory results in-
side the experiment directory, where logs are stored. When
the script terminates, you can inspect the log to determine
whether Revizor detected a violation. Violations (if any) are
stored in subdirectories inside results/violations/. Each
violation directory will contain the program, the inputs, and
the configuration file.

Intel. On Intel, our claims can be confirmed with the follow-
ing experiments.
E1: C1 - page faults - violation [1/2 machine hours]: Test

each page fault class (invalid, read-only, SMAP) against
CT-DH.
Result: violation (for all classes)

E2: C1 - page faults - correct [36 machine hours]: Test
each page fault class (invalid, read-only, SMAP) against
CT-VS-NI on CoffeeLake (and newer), resp. against CT-
VS-All (on KabyLake and older).
Result: no violation

E3: C2 - non-canonical accesses - violation [12 machine
hours]: Test non-canonical accesses against CT-VS-All.
Result: violation. Due to the complexity of the contract,
finding a violation may take several hours (it was 11h

when we ran the experiment). Please increase the timeout
if no violation is found within 12h.

E4: C3 - Mpx - correct [12 machine hours]: Test MPX
against CT-DH.
Result: no violation

E5: C4 - ucode-assists - violation [1/6 machine hours]: Test
both variants of ucode-assists (Access bit and Dirty bit)
against CT-DH.
Result: violation (for both variants)

E6: C4 - ucode-assists - correct [24 machine hours] Test
both variants against CT-VS-NI on CoffeeLake (and
newer), resp. against CT-VS-All (on KabyLake and
older).
Result: no violation

E7: C5 - division - violation [2 machine hours] Test both
types of division errors (divide-by-zero and division over-
flow) against CT-VS-NI.
Result: violation (for both variants)

E8: C5 - division - correct [24 machine hours] Test both
types of division errors (divide-by-zero and division
overflow) against CT-VS-Ops.
Result: no violation

E9: C6 - others - correct [36 machine hours] Test #UD, #DB
and #BP against CT-SEQ.
Result: no violation

AMD. On AMD, our claims can be confirmed with the fol-
lowing experiments.
E1: C1 - page faults - violation [1/6 machine hours]: Test

each page fault class (invalid, read-only, SMAP) against
CT-SEQ.
Result: violation (for all classes)

E2: C1 - page faults - correct [36 machine hours]: Test
each page fault class (invalid, read-only, SMAP) against
CT-DH.
Result: no violation

E3: C2 - non-canonical accesses - violation [1/12 machine
hours]: Test non-canonical accesses against CT-DH.
Result: violation

E4: C2 - non-canonical accesses - correct [12 machine
hours]: Test non-canonical accesses against CT-VS-CI.
Result: no violation

E5: C4 - ucode-assists - correct [24 machine hours] Fuzz
both variants (Access bit and Dirty bit) against CT-SEQ.
Result: no violation

E6: C5 - division - violation [2 machine hours] Test both
type of division errors (divide-by-zero and division over-
flow) against CT-VS-NI.
Result: violation (for both variants)

E7: C5 - division by zero - correct [12 machine hours] Test
division-by-zero errors against CT-VS-Ops on Zen3 (or
newer), resp. against CT-VS-All on Zen+ (or older). For
Zen2 (which was not part of our setup), we expect CT-
VS-Ops to hold as well.
Result: no violation

E8: C5 - division overflow - correct [12 machine hours]
Test division overflows against CT-VS-Ops.
Result: no violation

E9: C6 - others - correct [36 machine hours] Test #UD, #DB
and #BP against CT-SEQ.
Result: no violation

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

