
USENIX’23 Artifact Appendix:
Automated Analysis of Protocols that use Authenticated Encryption:

How Subtle AEAD Differences can impact Protocol Security

Cas Cremers1, Alexander Dax1,3, Charlie Jacomme2, and Mang Zhao1,3

1CISPA Helmholtz Center for Information Security, Germany
2Inria Paris, France

3Saarland University

A Artifact Appendix

A.1 Abstract

This artifact appendix presents a description of the experi-
ments and case studies conducted in the research paper Auto-
mated Analysis of Protocols that use Authenticated Encryp-
tion: How Subtle AEAD Differences can impact Protocol
Security. One of the core objectives of this research is to
analyze the impact of subtle differences in AEADs on the
security of a variety of protocols.

We provide means to reproduce our case studies of 8 dis-
tinct security protocols, namely YubiHSM, Facebook’s Mes-
sage Franking, SFrame, WebPush, Whatsapp Group Messag-
ing, GPG, saltpack, and Scuttlebutt. These protocols are ana-
lyzed under different various AEAD models. We structured
and defined those models in a library file. All models in the
library, along with the case studies, are implemented using
the Tamarin Prover, a symbolic analysis tool for security pro-
tocols.

The AEAD models and case studies are made available
in a public Github repository with detailed instructions and
automated means to replicate the experiments discussed in the
original research paper. Additionally, a Docker image with
the necessary software is made available for easy setup and
execution.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

All our files are publicly available and can be accessed
in the following GitHub repository https://github.com/
AutomatedAnalysisOf/AEADProtocols/tree/V1.

A.2.3 Hardware dependencies

Our artifact does not require any specific hardware. However,
as the used software (e.g. the Tamarin Prover 1) does also
scale with computation power and memory, we recommend to
at least use a modern notebook or similar modern computing
devices. GPUs are not required.

A.2.4 Software dependencies

We provide access to a docker2 image which has all the nec-
essary software dependencies pre-installed.

(Optional) Dependencies for manual installation In case
the reviewers choose to manually install the dependencies,
they should install the following
1. Tamarin Prover3 (depends on haskell-stack, graphviz,

and maude.) Note that Tamarin does not run on Win-
dows systems and a virtual machine/WSL may be
needed. Additionally, we added a .zip file with the cor-
rect Tamarin version to the GitHub repository.

2. Python3 - install pip, and use it to install tabulate and
matplotlib.

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

Clone the repository using:

$ git clone https://github.com/
AutomatedAnalysisOf/AEADProtocols.git↪→

1https://tamarin-prover.github.io
2https://docs.docker.com/engine/install/
3https://tamarin-prover.github.io/manual/book/002_

installation.html

https://github.com/AutomatedAnalysisOf/AEADProtocols/tree/V1
https://github.com/AutomatedAnalysisOf/AEADProtocols/tree/V1
https://tamarin-prover.github.io
https://docs.docker.com/engine/install/
https://tamarin-prover.github.io/manual/book/002_installation.html
https://tamarin-prover.github.io/manual/book/002_installation.html

Figure 1: Exempt of the terminal output produced by tamarin_wrapper.py.

and navigate inside the repository.
After installing docker, pull the docker image using

$ docker pull aeads/tamarin

Now, you can run the image using:

$ docker run -it -v $PWD:/opt/case-studies
aeads/tamarin bash↪→

(Optional) Hints for manual installation

In the case you want to set up the experiments without docker
here are some hints:
- Make sure to use the tamarin prover version provided in

the GitHub repository.
- Follow the instruction on https://tamarin-prover.

github.io/manual/book/002_installation.html
to install the tamarin prover. Common problems are
missing Haskell dependencies or outdated versions of
Maude

- Make sure that the tamarin-prover executable is in the
$PATH.

A.3.2 Basic Test

Execute

$ tamarin-prover test

to see whether the docker started successfully (or whether
your manual installation worked).

You should see a message containing
- a check for maude,
- a check for Grapviz, and
- a test for the unification structure (0 errors and 0 failures).
In the end you should see the following:

All tests successful.
The tamarin-prover should work as intended.

:-) happy proving (-:

A.4 Evaluation workflow
A.4.1 Major Claims

One of the primary objectives of the case study analysis is
to identify the most robust AEAD model that preserves the
desired security property for each protocol.

The provided models in the artifact appendix include for-
mal representations, so-called lemmas, expressed in the input
language of the Tamarin Prover, which capture the desired
security properties of the protocols.

Through automated execution of Tamarin with different
AEAD models using a provided Python script, the lemma
results are checked to determine if they hold or provide coun-
terexamples, facilitating efficient analysis. Further details on
the Python script and the core idea can be found in the original
paper.

Table 1 shows an output of the Python script for the What-
sapp group messaging protocol model. Here, for instance,
the lemma marked as consistency does not hold under the
collkeys or the the collmmax AEAD models. The name
tags are explained in the README.md file and defined in the
original paper.

Our focus lies on identifying the weakest AEAD model
that ensures the security property proven by the lemma, as
well as determining the strongest AEAD models that lead to
potential attacks. However, it is important to note that certain
models may not terminate within the specified timeout. In
such cases, we still identify AEAD models that demonstrate
both secure properties and attack possibilities. In this case,
we do not claim that these models represent the strongest
or weakest models where the property still holds or yields a
counterexample.

We give details on the reported results in the orig-
inal paper and provide the concrete results in the
GitHub https://github.com/AutomatedAnalysisOf/
AEADProtocols/tree/V1.

A.4.2 Experiments

Instead of running all models independently, we provide a
python program to run all of them at once. For that we used
a computing cluster with Intel® Xeon® Gold 6244 CPUs
and 1TB RAM. In case you do not have access to a com-
puting cluster, you may need to increase the timeout in the
case_studies.tamjson file. Open the file using the editor
of your choice and navigate to the line "timeout": 60, and
increase the number slightly. The number after the timeout is
defined as seconds.

In the GitHub repository we also provide the results of our
case studies when running them on our machine. We had a
total evaluation time of 17 hours and 29 minutes with a total
of 1404 tamarin prover calls. While we tested the case studies

https://tamarin-prover.github.io/manual/book/002_installation.html
https://tamarin-prover.github.io/manual/book/002_installation.html
https://github.com/AutomatedAnalysisOf/AEADProtocols/tree/V1
https://github.com/AutomatedAnalysisOf/AEADProtocols/tree/V1

also on a modern notebook, we cannot guarantee the same
precise result, as specific lemmas using certain AEAD models
may not terminate within the timeout. This mostly concerns
the protocol models if YubiHSM and SFrame. All others
should finish rather fast (< 1hour), also on normal notebooks.
Preparation: After following the installation instruction in

Section A.3.1, enter the Models folder within the cloned
repository/docker image.

Execution: Execute

$ python3 tamarin_wrapper.py -f
case_studies.tamjson↪→

Note, that depending on your machine the results
may differ. You can increase the timeout in the
case_studies.tamjson

Results: While the results will be printed into the ter-
minal (see Figure 1), .csv files of the results are
also stored within the newly created results folder.
They can be compared to our provided results in the
results_precomputed folder in the Models directory.
We also refer to Table 3 and Table 4 in the original paper
to confirm that your run did find the same attacks

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

