
USENIX’23 Artifact Appendix: Smart Learning to Find Dumb Contracts

Tamer Abdelaziz†

tamer@comp.nus.edu.sg
(†) National University of Singapore

Singapore

Aquinas Hobor‡,†

a.hobor@ucl.ac.uk
(‡) University College London

London, United Kingdom

A Artifact Appendix

A.1 Abstract
The artifact is an implementation of Deep Learning
Vulnerability Analyzer (DLVA), a vulnerability detection tool
for Ethereum smart contracts based on powerful deep learn-
ing techniques for sequential data adapted for bytecode. We
benchmark DLVA against nine competitors.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

N/A

A.2.2 How to access

Both DLVA and DLVAlarge are available as Docker images at
https://hub.docker.com/u/dlva.

A.2.3 Hardware dependencies

The test machine is a desktop with a 12-core 3.2 GHz Intel(R)
Core(TM) i7-8700 and 16 GB of memory.

A.2.4 Software dependencies

Ubuntu OS and Docker should be installed.

A.2.5 Benchmarks

In this artifact, we use three benchmarks to compare DLVA
with the-state-of-the-art tools. Elysiumbenchmark https://
bit.ly/Elysium_benchmark, Reentrancybenchmark https:
//bit.ly/Reentrancy_benchmark, SolidiFIbenchmark
https://bit.ly/SolidiFI_benchmark.

A.3 Set-up
A.3.1 Installation

The instructions to install DLVA as follows: Open the terminal
and enter the following command to create a “dlva folder” in
the home directory: mkdir ~/dlva

• To install DLVA (trained on SolidiFI’s labels or on
Slither’s labels of small-length contracts):

1. Pull the latest version of the DLVA Docker image
by running the following command:
docker pull dlva/dlva:latest

2. Run the DLVA Docker container with the following
command:
docker run -i -t -v

~/dlva/:/DLVA_Tool/dlva/ dlva/dlva

3. After executing the above commands, you will be
inside the DLVA Docker container.

• To install DLVAlarge (trained on Slither’s labels of large-
length contracts):

1. Pull the latest version of the DLVAlarge Docker
image by running the following command:
docker pull dlva/dlva-large:latest

2. Run the DLVAlarge Docker container with the fol-
lowing command:
docker run -i -t -v

~/dlva/:/DLVA_Tool/dlva/ dlva/dlva-large

3. After executing the above commands, you will be
inside the DLVAlarge Docker container.

A.3.2 Basic Test

Now, follow the command-line interface instructions to inter-
act with DLVA Docker container.

1. Press 1 to run DLVA trained on SolidiFI labels, or press
2 to run DLVA trained on Slither labels (small contracts).

2. Enter 1 for a single contract mode, or 2 for a batch of
contracts mode.

3. For a single contract mode: enter contract address e.g.
0x01f8c4e3fa3edeb29e514cba738d87ce8c091d3f
or insert the bytecode in “dlva/input.bin” file at “dlva
folder” then enter: b

https://orcid.org/0000-0002-6356-4749
https://hub.docker.com/u/dlva
https://bit.ly/Elysium_benchmark
https://bit.ly/Elysium_benchmark
https://bit.ly/Reentrancy_benchmark
https://bit.ly/Reentrancy_benchmark
https://bit.ly/SolidiFI_benchmark


4. For batch mode: copy the dataset file (e.g., batch.csv
with "address" and "bytecode" columns) to the “dlva
folder”, then enter ../dlva/batch.csv Alternatively,
the user can use the provided test dataset by entering
Testset10.csv The analysis results will be written
in file named “DLVA_Predictions_batch.csv” at “dlva
folder”.

To test DLVAlarge Docker container follow the same afore-
mentioned steps without step 1.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): DLVA performs well in practice for smart contract
vulnerability detection: Figure 1 illustrates DLVA per-
formance against nine competitors. DLVA is on the far
right. We use bar-and-whiskers where star ⋆ represents
the mean and plus + represents outliers. Our average
Completion Rate (i.e., the percentage of contracts for
which a tool produces an answer, the higher the better)
is 100.0%. Our average accuracy is 99.7% (the higher
the better), with a True Positive Rate (i.e., detection rate;
the higher the better) of 98.7% and a False Positive Rate
(i.e., false alarm rate; the lower the better) of 0.6%. Our
average analysis time per contract (the graph is in log
scale, lower better) is 0.2 seconds. Smart learning pays
off: DLVA beats Slither on every statistic except for TPR
(where it lags by 0.7%). Recall also that Slither requires
source whereas DLVA needs only bytecode.
This is proven by the experiment (E1) described in §4.4
whose results are illustrated/reported in Figure 1, the
data underlying Figure 1 is in Tables 4, 5, and 6.

A.4.2 Experiments

(E1): 30 human-minutes + machine with 12-core and 16 GB
memory + 12 GB disk
How to: Run the DLVA Docker container with the fol-
lowing command:
docker run -i -t -v
~/dlva/:/DLVA_Tool/dlva/ dlva/dlva
Preparation: After executing the previous command,
the three benchmarks A.2.5 will be downloaded auto-
matically and saved to the “dlva folder”.
Execution: Run DLVA on the three benchmarks:

1. For Elysiumbenchmark:
(a) Press 2 to select DLVA trained on Slither labels

(small contracts).
(b) then, press 2 to select the batch of contracts

mode.
(c) then, enter:

../dlva/Elysium_benchmark.csv

(d) then, wait until the analysis is com-
plete, the raw results will be stored at
“dlva/DLVA_Predictions_for_Elysium_benchm
ark.csv”

2. For Reentrancybenchmark:
(a) Press 2 to select DLVA trained on Slither labels

(small contracts).
(b) then, press 2 to select the batch of contracts

mode.
(c) then, enter:

../dlva/Reentrancy_benchmark.csv

(d) then, wait until the analysis is com-
plete, the raw results will be stored at
“dlva/DLVA_Predictions_for_Reentrancy_benc
hmark.csv”

3. For SolidiFIbenchmark:
(a) Press 1 to select DLVA trained on SolidiFI la-

bels.
(b) then, press 2 to select the batch of contracts

mode.
(c) then, enter:

../dlva/SolidiFI_benchmark.csv

(d) then, wait until the analysis is com-
plete, the raw results will be stored at
“dlva/DLVA_Predictions_for_SolidiFI_benchm
ark.csv”

4. Press 0 to exit from the DLVA Docker image.
Results: Enter: cd ~/dlva
then enter: pip3 install -r requirements.txt
then: python3 print_dlva_results.py that will
show the DLVA results on the three benchmarks.
then: python3 print_competitors_results.py
that will show the competitors results on the three
benchmarks.
Open the “dlva folder”, seven files have been
added: “tools_results.txt” contains the log per-
formance for all tools based on raw data in
“10_tools_files” folder, “tools_results.csv” represents
the same results as a spreadsheet, and five files of
“tools_predictions_benchmark.csv” contain labels of all
tools for each benchmark.
The FN and FP produced numbers in this experiment
should match the numbers in Tables 4, 5, and 6.
Any number in Figure 1 is the average for each tool using
the three benchmarks.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


