
USENIX’23 Artifact Appendix: <HorusEye: A Realtime IoT Malicious
Traffic Detection Framework using Programmable Switches>

Yutao Dong1,2, Qing Li *2*, Kaidong Wu1,2, Ruoyu Li1,2, Dan Zhao2, Gareth Tyson3, Junkun Peng1,2,
Yong Jiang1,2, Shutao Xia1,2, and Mingwei Xu4

1Tsinghua Shenzhen International Graduate School, Shenzhen, China
2Peng Cheng Laboratory, Shenzhen, China

3Hong Kong University of Science and Technology (GZ), Guangzhou, China
4Tsinghua University, Beijing, China

A Artifact Appendix

A.1 Abstract

In this artifact, we provide datasets and prototype related to
our paper. Specifically, We use Python to implement iForest
training and rule generation. We use P4 programming lan-
guage to deploy Gulliver Tunnel on a H3C S9830-32H-H
data center switch with an Intel Tofino switch ASIC, and test
hardware performance. We use PyTorch to implement Magni-
fier and use TensorRT to implement quantization operations.
We deploy Magnifier on a GeForce RTX 2080 SUPER. The
artifact can reproduce all experimental results reported in the
main body of the paper.

Our source code is available at https://github.com/
vicTorKd/HorusEye.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

N/A.

A.2.2 How to access

We host our source code on GitHub at https://github.
com/vicTorKd/HorusEye. Specifically, we use this com-
mit for the artifact evaluation: https://github.com/
vicTorKd/HorusEye/releases/tag/v1.0.1.

A.2.3 Hardware dependencies

CPU, GeForce RTX 2080 SUPER GPU (for Magnifier), H3C
S9830-32H-H data center switch with an Intel Tofino switch
ASIC (for Gulliver Tunnel hardware performance, optional).

*Corresponding author: Qing Li (liq@pcl.ac.cn)

A.2.4 Software dependencies

The artifact is based on Python, PyTorch, TensorRT, sklearn
and other Python packages. All packages can be easily in-
stalled with pip; we provide a list of required packages in
iot.yaml

A.2.5 Data Set

The extracted data set (used in the article experiment) can be
downloaded at link (The compressed file needs to be extracted
under the DataSets folder to get HorusEye/DataSets/Pcap).

Also, we can download the original Pcap file at link and
re-do the feature extraction. For burst level feature extraction,
in pcap_process packet, python files should be executed in the
following order (You need to manually change the datasets
path in .py files and more detail can be found in README):

1. cd pcap_process

2. python3 pcap2csv_attack.py

3. python3 csv_process_attack.py

4. python3 extract_flow_size.py

For flow level feature extraction:

1. cd HorusEye

2. python3 FE.py.

A.2.6 Models

Our model is placed in AE.py under the model folder, which
implements our Magnifier model. In the repository, we also
include our baseline model Kitsune.

https://github.com/vicTorKd/HorusEye
https://github.com/vicTorKd/HorusEye
https://github.com/vicTorKd/HorusEye
https://github.com/vicTorKd/HorusEye
https://github.com/vicTorKd/HorusEye/releases/tag/v1.0.1
https://github.com/vicTorKd/HorusEye/releases/tag/v1.0.1
https://github.com/vicTorKd/HorusEye/blob/main/iot.yaml
https://drive.google.com/u/0/uc?id=1k-oTsxVD3fkZnjwj-4XclVhQdAC36nLd&export=download
https://drive.google.com/u/0/uc?id=191CmJYWszlSmIitfid2J53UMYtiaqhhe&export=download

A.3 Set-up
This section should include all the installation and configura-
tion steps required to prepare the environment to be used for
the evaluation of your artifact.

A.3.1 Installation

1. conda install -c anaconda conda-env (anaconda or mini-
conda is needed)

2. Clone the source code from https://github.com/
vicTorKd/HorusEye.

3. conda env create -f iot.yaml

4. If the TensorRT installation fails during the above instal-
lation process, you need to install it manually (TensorRT-
8.2.1.8).

5. Download extracted datasets.

A.3.2 Basic Test

After downloading the data and ensuring that the data path is
correct, you can run the main function in the iForest_detect.py
file, which is a simple demo of the rule generation algorithm
in Gulliver Tunnel (no GPU required). After ensuring that
TensorRT is installed and you have a GPU, you can run the
control_plane.py file to get all the experimental results except
hardware performance. If there is a programmable switch,
you can compile iot_dect_waterflow8.p4 to the switch, and
check the hardware performance through p4i.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): HorusEye notably outperforms the Kitsune model in
most attacks on both our and public datasets, especially
in low false positive scenarios. Additionally, Horus-
Eye and Magnifier achieve comparable detection perfor-
mance, while HorusEye is even slightly better at detect-
ing most anomalies than Magnifier. This is proven by the
experiment (E1) and (E2) described in section 6.7 whose
results are illustrated in Table 5 and Table 10.

(C2): Rule generation algorithm can convert hundreds of
iTrees into whitelists. Then, the whitelists can offload
76% of normal traffic on our dataset, i.e., the throughput
gains are 4.13x. This is proven by the experiments (E1)
in sections 6.4 and 6.9 whose results are illustrated in
Table 1 and Figure 8(a).

(C3): Magnifier (fp32) has significantly better packet
throughput than Kitsune. Additionally, quantizing Mag-
nifier from 32-bit float (fp32) to 8-bit int (int8) brings
about a 2.5x throughput gain while the TPR only slightly
drops from 0.675 to 0.636 on our dataset. This is proven

by the experiments (E1) and (E3) in sections 6.9 whose
results are illustrated in Figure 8.

(C4): Gulliver Tunnel is fairly robust to three common black-
box attacks: injection attack, low-rate attack and poison
attack. This is proven by the experiments (E4) in section
6.8 whose results are reported in Figure 7.

(C5): Gulliver Tunnel deployed on the switch can reach
100Gbps and occupies very little TCAM and SRAM. This
is proven by the experiments (E5) in section 6.6 whose
results are reported in Table 3 and Table 4.

A.4.2 Experiments

(E1): [Experiment on our dataset] [30 human-minutes + 30
compute minutes + 20GB disk]: evaluate the detection
performance and throughput of the model on our dataset.
Preparation: After cloning the source code, configure
the conda environment according to "iot.yaml", down-
load the extracted dataset zip and extract it to the root
directory of the source code project, and use the model
files packaged in the source code project to evaluate it
directly without training.
Execution: To evaluate HorusEye (Magnifier (fp32)
+ Gulliver Tunnel), run "python control_plane.py - -
train False - -experiment A - -horuseye True" in the
root of the source code project. To evaluate Magnifier
(fp32) only, run "python control_plane.py - -train False
- -experiment A - -horuseye False". You can run "python
control_plane.py - -help" for more detailed instructions.
Results: For the evaluation of HorusEye, the detec-
tion performance of HorusEye, the throughput of Mag-
nifier (fp32) and the throughput gain of Gulliver Tun-
nel will be displayed in the terminal and the detection
performance results will also be saved in the csv file
located at ". /result/HorusEye/record_attack.csv". For
the evaluation of Magnifier (fp32), the detection perfor-
mance and the throughput of Magnifier (fp32) will be
displayed in the terminal and the detection performance
results will also be saved in the csv file located at ".
/result/Magnifier/record_attack.csv".

(E2): [Experiment on public dataset] [30 human-minutes +
30 compute-minutes + 20GB disk]: evaluate the detec-
tion performance of the model on public dataset.
Preparation: Same as that of (E1).
Execution: To evaluate HorusEye (Magnifier (fp32) +
Gulliver Tunnel), run "python control_plane.py train
False experiment B horuseye True" in the root of the
source code project. To evaluate Magnifier (fp32) only,
run "python control_plane.py train False experiment B
horuseye False". You can run "python control_plane.py
help" for more detailed instructions.
Results: For the evaluation of HorusEye, the detection
performance of HorusEye will be displayed in the ter-
minal and further saved in the csv file located at ".

https://github.com/vicTorKd/HorusEye
https://github.com/vicTorKd/HorusEye

/result/Open-Source/HorusEye/record_attack.csv". For
the evaluation of Magnifier (fp32), the detection per-
formance of Magnifier (fp32) will be displayed in the
terminal and further saved in the csv file located at ".
/result/Open-Source/Magnifier/record_attack.csv".

(E3): [Experiment with int8 model] [30 human-minutes +
20 computeminutes + 20GB disk]: evaluate the detec-
tion performance and throughput of the int8 model after
quantizing on our dataset.
Preparation: In addition to the same as that of (E1), an
additional configuration of TensorRT-8.2.1.8 is required.
Execution: To evaluate HorusEye (Magnifier (int8) +
Gulliver Tunnel), run "python control_plane.py train
False experiment C horuseye True" in the root of the
source code project. To evaluate Magnifier (int8) only,
run "python control_plane.py train False experiment ho-
ruseye False". You can run "python control_plane.py
help" for more detailed instructions.
Results: For the evaluation of HorusEye, the detection
performance of HorusEye and the throughput of Mag-
nifier (int8) will be displayed in the terminal and the
detection performance results will also be saved in the
csv file located at ". /result/HorusEye/record_attack.csv".
For the evaluation of Magnifier (int8), the detection per-
formance and the throughput of Magnifier(int8) will be
displayed in the terminal and the detection performance
results will also be saved in the csv file located at ".
/result/Magnifier/record_attack.csv".

(E4): [Experiment on robustness] [30 human-minutes + 10
compute-minutes + 20GB disk]: evaluate the detection
performance (robustness) of Gulliver Tunnel under three
common black-box attacks.
Preparation: Same as that of (E1).
Execution: Run "python control_plane.py train False
experiment D horuseye False" in the root of the source
code project. Note that after running this experiment,
the parameters of Gulliver Tunel will be modified, and
retraining is required when re-running other experi-
ments. You can retrain by setting "train" to True, as
in "python control_plane.py train True experiment A
horuseye True". You can run "python control_plane.py
help" for more detailed instructions.
Results: The detection performance of Gulliver Tun-
nel will be displayed in the terminal and the detec-
tion performance results of each type of black-box
attacks will be saved in the csv file located at "./re-
sult/df_robust_result_robust_type.csv".

(E5): [Hardware performance] [30 human-minutes + 10
compute-minutes + 20GB disk]: evaluate the hardware
performance of Gulliver Tunnel after deployment on the
programmable switch. (optional)
Preparation: An Intel Tofino switch ASIC and a traffic
generator (e.g., SPIRENT N11U).
Execution: (1) Use winscp to log in to

the switch, and put p4 file into the switch,
e.g., /mnt/onl/data/bf-sde-9.1.0/pkgsrc/p4-
examples/p4_16_programs/iot/iot_dect_waterflow8.p4.
(2) Use ssh to log in switch, cd
$SDE/pkgsrc/p4-build. (3) ./configure –
prefix=$SDE_INSTALL –with-tofino –with-bf-runtime
P4_NAME=iot_dect P4_PATH=$SDE/pkgsrc/p4-
examples/p4_16_programs/iot/iot_dect_waterflow8.p4
P4_VERSION=p4-16 P4C=p4c. (4) make. (5) make
install. (6) Use a traffic generator to test forwarding.
Results: The resource occupation performance of Gul-
liver Tunnel will be displayed in $SDE/pkgsrc/p4-
build/tofino/iot_dect/pipe/log. The single port forward-
ing performance can be shown in Traffic Analyzer.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926.

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Data Set
	Models

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

