
USENIX’23 Artifact Appendix: XCheck: Verifying Integrity of 3D
Printed Patient-Specific Devices via Computing Tomography

Zhiyuan Yu†, Yuanhaur Chang†, Shixuan Zhai†, Nicholas Deily†,
Tao Ju†, XiaoFeng Wang§, Uday Jammalamadaka‡, Ning Zhang†

† Washington University in St. Louis
§ Indiana University Bloomington

‡ Rice University

A Artifact Appendix

A.1 Abstract
XCheck is a defense system designed to verify the integrity
of 3D-printed medical devices, by crosschecking their CT
scans against the original designs with shape comparison
techniques. Our artifact comprises the source code, CT scans
(in the DICOM format), and designed model files (in the STL
format). To operate the system, the user needs to run the
program in the command line, providing input file paths and
specifying acceptable thresholds adapted to different types
of medical devices. The expected output includes interactive
visualization for identifying malicious areas, and quantitative
scores indicating whether the print is benign or malicious.

Given the complex computation and geometry rendering
involved in XCheck, a machine with a moderate CPU and
GPU, as well as memory of at least 16 GB is recommended.
Please note that run-time may vary depending on the user’s
hardware. We have compiled a list of required dependencies
into a YML configuration file.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

The artifact provided does not contain any harmful materials
that may compromise machine security or pose threats to
human health. The models and CT scans used by the system
were not derived from real human subjects, and there is no
privacy concern associated with the use of artifacts. We have
taken the utmost care to ensure that the artifact meets all
necessary safety standards and guidelines.

A.2.2 How to access

We have made the code, models, and CT scans publicly avail-
able on GitHub. The stable URL link pointing to the commit
is https://github.com/WUSTL-CSPL/XCheck/commits/
5ee4b4820671fc215795ccb09daa70670a29e4f3.

A.2.3 Hardware dependencies

The system can run on a machine with a moderate CPU
and at least 16GB of available RAM. The system was tested
stable on a desktop computer with AMD Ryzen 9 3900X 12-
Core Processor, NVIDIA GeForce RTX 3070 Ti, and 32GB
memory; and a laptop with Intel i9-9880H Processor, AMD
Radeon Pro 5500M, and 16GB memory. Both setups are
equipped with OpenGL of version 4.1. No other specific hard-
ware is required, but the variance in hardware can lead to
differences in run-time.

A.2.4 Software dependencies

XCheck was implemented in Python, and the system’s envi-
ronment was set up using Miniconda 4.12.0 on Ubuntu 22.0.4.
The required packages include vedo, vtkplotter, open3d, point-
cloud-utils, numpy, matplotlib, pydicom, seaborn, and scipy.
For the detailed installation process please see Section A.3.
The models and CT scans for testing are included in the arti-
fact and do not need to be downloaded from external sources.

A.2.5 Benchmarks

The data required by the experiments are the design models (in
the STL format) and CT scans (in the DICOM format) of the
printed medical devices. Nine malicious models underwent
geometry or material modifications provided; three malicious
bone scaffolds where certain internal regions were filled in
solid, a lung-on-chip with solid internal bulges, a dental guide
with added sphere volume, two bone screws with enlarged
thread distance and shortened non-threaded shank, a bone
screw and a dental guide printed with a different material. The
CT scans and design models can be found in the directory
./Geometry.

https://github.com/WUSTL-CSPL/XCheck/commits/5ee4b4820671fc215795ccb09daa70670a29e4f3
https://github.com/WUSTL-CSPL/XCheck/commits/5ee4b4820671fc215795ccb09daa70670a29e4f3


A.3 Set-up
A.3.1 Installation

Conda or Miniconda is recommended for setting up the en-
vironment. It can be installed via the official link https://
docs.conda.io/en/latest/miniconda.html and the pro-
cess can differ based on the user’s OS. The commands for
setting up the environment with the xcheck.yml file are:

$ cd <the_path_to_the_folder>
$ conda env create -f xcheck.yml
$ conda activate xcheck

A.3.2 Basic Test

The basic functionality can be tested with an additional flag
-basic in the command line. For testing, please run the follow-
ing command:

$ python3 run.py -basic Bone_12

The expected output is an interactive visualization window,
with an example shown in Figure 6 in the manuscript. The
boxes in the top right corner are clickable, each corresponding
to an analysis method. When clicking on Registration, the CT-
reconstructed model should overlap with the design model, in-
dicating that they are properly aligned after registration. When
clicking on Added Voxel or Missing Voxel, an additional box
Colormap becomes clickable. The colormap enables filtering
out areas with lower distances, therefore highlighting the ar-
eas where geometric discrepancies are high. When clicking
on Ray-based, it shows results where malicious regions are
highlighted in red in the 3D space.

A.4 Evaluation workflow
A.4.1 Major Claims

In summary, our major claim is that XCheck can verify the
integrity of printed devices in terms of geometry and material,
by providing both interactive visualization applications and
quantitative risk scores.
(C1): XCheck can validate the geometry integrity by measur-

ing and visualizing discrepancies in geometric features.
This is proven by the experiment (E1) described in Sec-
tion 6 whose results are illustrated/reported in Figure 6
and Figure 11.

(C2): XCheck can validate the material of printed objects
by comparing them to prints with similar geometry but
different materials. The material verification result is
reflected in the corresponding Gamma_m value. This
is proven by the experiments (E2) whose results are
illustrated in Table 3 in the appendix.

(C3): XCheck provides a quantitative risk score with gamma
analysis, which aggregates geometry and material devi-
ations. This is proven by the experiments (E3) whose
results are illustrated in Table 3 in the appendix.

A.4.2 Experiments

(E1): [Geometry Verification] [16 compute minutes + 1GB
disk]:
Preparation: Detailed instructions regarding environ-
ment setup and activation are included in Section A.3.1.
Execution: The experiments are conducted using com-
mand lines. For each of the included CT scans and mod-
els under ./Geometry, run the command by replacing
the "-f1" and "-f2" arguments for the files to be com-
pared, and the "-etdist", "-ets", and "-etg" command to
set the appropriate thresholds. For instance, to compare
the CT scans of a 3D printed bone scaffold (./Geom-
etry/Bone_12), that is manipulated by adding various
internal solid regions, to its original model (./Geome-
try/Bone.stl), use the following command:

$ python3 run.py \
-f1 "Geometry/Bone_12" \
-f2 "Geometry/Bone.stl"
-o Bone_12 -etdist 1.7 \
-ets 0.05 -etg 0.005 -etm 1

Results: XCheck begins to first reconstruct the CT
scanned DICOM images, then aligns them to the original
model. Due to the complexity of models, the registration
process of XCheck adopts a non-deterministic design to
significantly reduce the runtime. Therefore, the iterative
registration will prompt the user to visualize the aligned
shapes to easily verify the registration. After the user
confirms and closes the visualization window, the user
can either press "enter" to proceed, or press "r" to restart
the registration.
When the program run to its termination, an interac-
tive visualization window appears, through which the
user can navigate to visualize the difference between the
original model and the CT-scanned reconstruction. The
user can click on Added Voxel or Missing Voxel coupled
with selecting Colormap to visualize the added/missing
voxel of the printed model. During this, the user can
also control different aspects of the visualization using
the following sliders. (1) Opacity-Divergence Isolation:
filters out voxels below a certain distance threshold; (2)
Colormap-Upper Bound: paints all voxels with distance
above the upper bound red, then normalizes and assigns
colors with the new bounds; (3) Colormap-Lower Bound:
paints all voxels with distance below the lower bound
blue, then normalize and assign colors with the new
bounds; and (4) Point Size: adjust voxel size ranging
from 1 to 10. By customizing these parameters, users
can identify whether a region of interest has been ma-
nipulated. For instance, in the verification of the model
./Geometry/Screw_5, adjusting Opacity can effectively
isolate part of voxels on threads and render in red, be-
cause the enlarged pitch size results in threads shifting to

https://docs.conda.io/en/latest/miniconda.html
https://docs.conda.io/en/latest/miniconda.html


shank regions. Such visualization enables a more flexible
and intuitive presentation of malicious regions.
Ray-based analysis leverages the principle that all ge-
ometry attacks have to alter the volume of devices. It
will identify and visualize such volume in the interactive
window. An example is given in ./Geometry/Bone_14
model, where the internal solid region is too small to
be captured by voxel analysis but can be visualized by
ray-based analysis when clicking the Ray-based box.

(E2): [Material Validation] [1 compute minute]:
Preparation: Material validation follows the geometry
verification automatically.
Execution: Material validation should run automati-
cally following the geometry verification.
Results: Material validation extracts the HU values
from the CT scans, using kernel density estimation
(KDE) to find the features describing its shape. This
information is compared with known benign values of
the same type of 3D-printed devices, to decide whether
the material is tampered with. The expected result is
reflected in the Gamma_m value, which is produced by
gamma analysis and will be printed out in the terminal.
The material will be considered malicious if the value is
higher than 1, otherwise it is considered benign.

(E3): [Gamma Analysis] [Less than 1 compute minute]:
Preparation: Gamma analysis follows the geometry
verification and material validation automatically.
Execution: Gamma analysis should run automatically
following the previous analysis.
Results: The gamma analysis is automatically calcu-
lated at each run. If any of the four Gamma terms is less
than 1, it is set to 1 to avoid value compensation when ag-
gregating different terms (Section 5.6 in the manuscript).
Each individual term of Gamma is squared and aggre-
gated to output a total Gamma value. If the total Gamma
value is no greater than 2, it is deemed benign, otherwise,
it is deemed malicious. Besides, each term can be ana-
lyzed independently to infer the exact attack type; for
instance, a material term Gamma_m larger than 1 indi-
cates the existence of material attacks in the examined
device. XCheck then proceeds to run to its termination,
with the expected output of an interactive visualization
window described in Section A.3.2.

[Computed Gamma_s: 5.130472175211942]
[Computed Gamma_d: 6.949988175539468]
[Computed Gamma_v: 1.8414619560913288]
[Computed Gamma_m: 0.43136242250997886]
[Total Computed Gamma: 8.889041709683562]
[Final Decision: Malicious]

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


