
USENIX’23 Artifact Appendix: One Size Does Not Fit All: Uncovering
and Exploiting Cross Platform Discrepant APIs in WeChat

Chao Wang
The Ohio State University

Yue Zhang
The Ohio State University

Zhiqiang Lin
The Ohio State University

A Artifact Appendix

A.1 Abstract

APIDiff is an automatic tool that generates test cases for
each API and identifies execution discrepancies. APIDiff con-
sists of three key components. The Test Case Generator is
responsible for creating test cases for each API, initializing the
parameters correctly, resolving dependencies between APIs,
and mutating parameter values to achieve high coverage. The
Code Executor executes the test cases on different platforms
(Windows, Android, and iOS) to generate corresponding out-
puts and detect discrepancies that may pose security concerns.
The Discrepancies Analyzer employs differential analysis and
predefined policies to examine error codes and return values
of tested APIs, enabling the identification of discrepant APIs.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

To ensure compliance with community practices, it is impera-
tive to strictly adhere to the following requirements:

• Thorough Analysis and Controlled Environment: All
analysis and execution of attacks must be conducted
within a controlled environment, utilizing personal ac-
counts and machines.

• Confidentiality of Attack Code and Malware: Any
developed attack code and malware must be kept private
and confidential to prevent any potential harm to users,
miniapp developers, and platform providers.

• Responsible Reporting: Any discoveries made during
the analysis should be promptly and responsibly reported
to Tencent, following their specified guidelines and pro-
cedures.

A.2.2 How to access

Please find our project online: https://
github.com/OSUSecLab/APIDiff/tree/
f65137b3f8dc037021773134db40b1d384d542b7

A.2.3 Hardware dependencies

To run the tools, you require a specific environment with the
following software and hardware requirements. Firstly, you
need an operating system (OS) such as Linux, macOS, or Win-
dows. Additionally, you need Node.js, which is a JavaScript
runtime environment. You also need WeChat DevTools, which
is a development tool specifically for creating and debugging
MiniApps. In terms of hardware, you will need devices for
conducting experiments. This includes Android devices, iOS
devices, and Windows devices.

A.2.4 Software dependencies

Please ensure that you have the latest version of WeChat
installed on your devices. In order to create and debug a
MiniApp for API testing, it is necessary to have a WeChat
account and install the IDE specified by Tencent.

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

To get started, please follow the steps below:

1. Clone the project: Use the Git command or a Git client
to clone the project repository. For example, you can use
the following command in your terminal:

1 git clone https://github.com/OSUSecLab/APIDiff/

2. Install additional dependencies:

1 # make sure node.js and npm is installed
2 node --version
3

4 # install for apitest-gen
5 cd apitest-gen && yarn && cd ..
6

7 # install for client
8 cd client && yarn && cd ..
9

10 # install for server
11 cd server && yarn && cd ..

1

https://github.com/OSUSecLab/APIDiff/tree/f65137b3f8dc037021773134db40b1d384d542b7
https://github.com/OSUSecLab/APIDiff/tree/f65137b3f8dc037021773134db40b1d384d542b7
https://github.com/OSUSecLab/APIDiff/tree/f65137b3f8dc037021773134db40b1d384d542b7


A.3.2 Basic Test

You can test each component by simply executing the follow-
ing commands:

• apitest-gen: npx ts-node
apitest-gen/src/apigen/main.ts

• client: npx ts-node client/src/index.ts

• server: npx ts-node server/agent/index.ts

A.4 Evaluation workflow

Generate the test cases Make sure you have documents
available for the test case generation. Note that the input
document should be an array of API (Array in typescript)
in JSON format. You can refer to Pre-processing for more
information.

You can specify the input document file via apitest-gen/
src/apigen/config.ts or via the environment variable
INPUT_DOC.

You can specify the output directory via the same config file
or via the environment variable OUTPUT_DOC.

Then, execute the apitest-gen/src/apigen/main.ts
to generate test cases. (i.e., ts-nodeapitest-gen/src/
apigen/main.ts)

Find the debug URL The debug URL is embedded in
WeChat DevTools. You need a WeChat account to create and
test a MiniApp, and via initiating a remote debug session you
can obtain such a debug URL.

1. Tweak the WeChat DevTools Locate your WeChat
DevTools installation directory, look for pack-
age.json inside package.nw (in macOS the location
is /Applications/wechatwebdevtools.app/
Contents/Resources/package.nw/package.json).
Then, find the -disable-devtools flag, remove it and
save the file.

2. Initiate a remote debug session. Choose a device target
to start a remote debug session. Make sure you are using
remote-debug 2.0 and enable LAN mode for best net-
work latency. Make sure the remote debugger window is
popped.

3. Find the debug URL Make sure the current fo-
cused window is the remote debugger, press F12
to open the chrome devtools. Switch to the El-
ements tab and find the webview tag (the se-
lector is body > div:nth-child(1) > div > div >
div.debugger > webview). Now you can find the de-
bug string is inside the src property starting with ws=.

An example debug string is ws=127.0.0.1:40204. You
can now transform this string into the debug URL:
ws://127.0.0.1:40204.

Run the server Make sure you have all dependencies in-
stalled. Then, you can start a server directly by the following
command:

1 cd server
2 REMOTE_DEBUG_WS=<your debug URL> ts-node agent/index.ts

Make sure the [evaluator init] global message is prompted
after running the server. If you did not see this message, the
debug URL might be invalid due to timeout. You need to redo
the previous steps. Note that the debug URL won’t change as
long as the WeChat DevTools is not closed or restarted.

You can also interact with the debugger via specifying EN-
ABLE_NODE_REPL environment variable. The Node.JS
REPL contains global objects for debugging. Please refer
to server/agent/index.ts for more information.

The server will open a port for the incoming re-
quests from the client. You can specify the port in
server/agent/listener/config.ts

Run the client You can now run the client to start testing.
You need to change the config file defined in client/src/
config.ts based on your previous configuration. After that,
you can run the client by the following command:

1 cd client && ts-node src/index.ts

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

2

apitest-gen/src/apigen/config.ts
apitest-gen/src/apigen/config.ts
apitest-gen/src/apigen/main.ts
ts-node apitest-gen/src/apigen/main.ts
ts-node apitest-gen/src/apigen/main.ts
/Applications/wechatwebdevtools.app/Contents/Resources/package.nw/package.json
/Applications/wechatwebdevtools.app/Contents/Resources/package.nw/package.json
client/src/config.ts
client/src/config.ts
https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Version


