
USENIX’23 Artifact Appendix: BASECOMP: A Comparative Analysis
for Integrity Protection in Cellular Baseband Software

Eunsoo Kim* 1, Min Woo Baek∗1, CheolJun Park1, Dongkwan Kim2, Yongdae Kim1, Insu Yun1

1 KAIST,
2 Samsung SDS

A Artifact Appendix

A.1 Abstract

This artifact implements comparative analysis in a static ap-
proach for detecting discrepancies with the specification in the
integrity protection of cellular baseband software. The system
comprises mainly two components; probabilistic inference
and symbolic execution. Probabilistic inference locates the
integrity protection function and is implemented with Python
APIs provided by IDA Pro. Symbolic execution reports the
mismatches and is implemented above angr. We evaluate the
system’s probabilistic inference by the effectiveness of find-
ing the genuine integrity protection function within baseband
firmware. We then evaluate the system by the number of bugs
found. Further, we evaluate the capability of finding different
types of bugs compared to dynamic testing methods. All of
the artifact evaluation results refer to Section 7 and the Ap-
pendix of the paper. The artifact evaluation aims for the three
badges: available, functional, and reproducible.

A.2 Description & Requirements

Here we describe the hardware and software requirements to
run the artifact, as well as the tested targets of our evaluation.

A.2.1 Security, privacy, and ethical concerns

There are no risks for the evaluators while executing the arti-
fact to their machine’s security, data privacy, or other ethical
concerns. This artifact has been used to detect 29 bugs in 16
images of baseband software and all have been responsibly
disclosed to the vendors.

A.2.2 How to access

The artifact is available on GitHub at the address https:
//github.com/kaist-hacking/BaseComp.

*These two authors equally contributed.

A.2.3 Hardware dependencies

We perform the experiments on AMD Ryzen 9 5900X 12-
Core Processor CPU, 3.70GHz, 64GB DDR4 RAM. No spe-
cific hardware feature is required for the artifact evaluation.

A.2.4 Software dependencies

We perform the experiments on Windows 11 Pro. For ana-
lyzing baseband firmware, we require IDA Pro v7.6. Codes
are written for Python 3.10.5 and require the packages
pgmpy, NetworKit, and angr. To build libraries for supporting
MIPS16e2, Visual Studio Build Tools are also required.

A.2.5 Benchmarks

We provide the 16 images from Table A1 of the paper. The
root directory of the artifact repository contains a folder
named artifact. The corresponding folder contains fold-
ers for each image which is named after the "Nick" column
of Table A1. In each folder, the image is provided.

A.3 Set-up
To prepare the environment to be used for the evalua-
tion of our artifact, clone the BaseComp repository https:
//github.com/kaist-hacking/BaseComp and checkout
commit cd6d118.

To load the provided images to IDA Pro, follow the steps
below. We provided the .idb files for images from MediaTek
separately through a link to external storage.
(S1): Run python parse_modem.py in the idb-creation

folder and provide the target image’s path.
(S2): Load the binary created with MAIN in its name to IDA

Pro. Set ARM Little Endian as the architecture and select
Manual Load.

(S3): Set the ROM start address and Loading address
as the starting address written in the binary’s name. This
should look something like 0x40010000.

(S4): Load the script file analyze.py in the idb-creation
folder to IDA Pro.

1

https://github.com/kaist-hacking/BaseComp
https://github.com/kaist-hacking/BaseComp
https://github.com/kaist-hacking/BaseComp
https://github.com/kaist-hacking/BaseComp


(S5): Repeat the steps above for images to be newly loaded.
To support the MIPS16e2 architecture later on in the sym-

bolic execution phase, follow the steps below after installing
all the software dependencies described in Section A.3.1.
(S1): Run python build_pyvexlib.py with mips16e2 as

the working directory in x64 Native Tools Command
Prompt for VS.

(S2): Copy the pyvex.dll and pyvex.lib
file created under the pyvex_c folder to
your_path_to_python/Lib/site-packages/pyvex/lib.
This should replace the library files originally located
there. Back up the original files if needed.

All the instructions are also described in the README files
of each directory of the artifact.

A.3.1 Installation

The experimental evaluation requires the following software.
(I1): pgmpy: https://pgmpy.org
(I2): NetworKit: https://networkit.github.io
(I3): angr: https://docs.angr.io
(I4): Visual Studio Build Tools: https://visualstudio.

microsoft.com/downloads/?q=build+tools

A.3.2 Basic Test

We prepared a simple functionality test inside the
function-identification folder of the artifact. The ex-
ecution of command python -m run_tests from the direc-
tory function-identification/tests performs construc-
tion of the call graph on a test code and checks its values. The
test should end within seconds and no assertions should be
raised.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): The utilization of probabilistic inference in our sys-
tem significantly reduces the number of functions to be
analyzed manually. The average rank of the genuine in-
tegrity protection function we seek is 1.56 as illustrated
in Table 4 of the paper. This is evaluated in (E1).

(C2): Our system detects a total of 34 mismatches from the
3 vendors we test. 29 of them are actual bugs including
those that can lead to NAS AKA bypass. This is evalu-
ated in (E2) and the results are summarized in Table 5
of the paper.

(C3): Our system complements dynamic testing in terms of
completeness for analyzing integrity protection. Com-
pared to DoLTEst and DIKEUE, which are previous
works that use dynamic testing for analyzing integrity
protection, our system covers more types of integrity pro-
tection bugs. This is evaluated with the same results of

(C2) and the comparison results are illustrated in Table
6 of the paper.

A.4.2 Experiments

(E1): Identifying Integrity Protection [5 human-minute +
30 compute-minute] for each image: Ranks possible
integrity protection functions in the target image.
Preparation: Follow the steps in Section
A.3 to prepare the .idb files for analysis. To
test with a different probability parameter
value, change the PROBABILITY_PARAMETER
value in the utils.py file under
function-identification/scripts/analyses.
Execution: Load the
identify_integrity_function.py file in
function-identification/scripts to the .idb
file of the target image.
Results: The results of the analysis should be written in
the results.txt file of the target image’s folder. A list
of functions should be under the line written Integrity
Function Probability. Starting with the function
with the highest rank, the address of the function
and probability is listed. The address of the genuine
integrity protection function (reference result) is in the
symbolic-execution/config_firmware.yaml file
written as integrity_func. The rank should be the
same as in Table 4 in the paper. Probability values may
slightly differ by the number of functions identified.
The time consumed for each step is also at the end of
the file. We repeated the experiment several times while
removing the cache every iteration and recorded the
average in Table 7 of the paper.

(E2): Symbolic Execution [5 human-minute + 5 compute-
minute] for each image: Finds mismatches with the spec-
ification in the integrity protection functions.
Preparation: Additional information about the image
earned by manual analysis is required to be writ-
ten in symbolic-execution/config_firmware.py.
However, those for the provided images are already writ-
ten down. Therefore, there is no preparation required for
the evaluators to process.
Execution: Run the command python
analyze_base.py -fn {name_of_target} in
the symbolic-execution directory for each image.
Results: The results will be created under the
symbolic-execution/results/{name_of_target}
folder with the current time as the file name. The
Errored Results and Errored States indicate
the mismatches found by the system. The list under
Errored Results consists of [security state,
security header, protocol discriminator,
message type, reason_why_it_is_errored] and
the list under Errored States just indicates the reason

2

https://pgmpy.org
https://networkit.github.io
https://docs.angr.io
https://visualstudio.microsoft.com/downloads/?q=build+tools
https://visualstudio.microsoft.com/downloads/?q=build+tools


it is errored. We gathered the mismatches by the vendor
and Table 5 in the paper indicates the results.

A.5 Notes on Reusability
To use our system on baseband firmware other than those
provided in the artifact, mainly 2 steps would be required.
(S1): Based on whether our current implementation supports

the vendor, a vendor-specific module might be needed to
be written. The instructions for writing the module are
well specified in the README files in the artifact.

(S2): Collect firmware-specific information such as the ad-
dresses of the security state, functions to skip, and so
on.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

3

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


