
USENIX’23 Artifact Appendix: We Really Need to Talk About Session
Tickets: A Large-Scale Analysis of Cryptographic Dangers with TLS

Session Tickets

Sven Hebrok1, Simon Nachtigall1,3, Marcel Maehren2, Nurullah Erinola2, Robert Merget4,2,
Juraj Somorovsky1, and Jörg Schwenk2

1Paderborn University
2Ruhr University Bochum

3achelos GmbH
4Technology Innovation Institute

A Artifact Appendix

A.1 Abstract
We performed a large-scale analysis of TLS session tickets. To
this end, we extended TLS-Scanner with further tests which
detected a variety of weak keys being used in the wild. To
support developers and server administrators when evaluating
their session ticket configurations, we publish our extension
for TLS-Scanner. This extension is able to detect the vulnera-
bilities discussed in our paper. Within this artifact evaluation,
we show that our extension is capable of detecting the vulner-
abilities from our paper.

A.2 Description & Requirements
TLS-Scanner is an established tool to scan TLS servers for
weaknesses. We implemented new probes to scan for weak-
nesses related to session tickets. These perform the tests out-
lined in our paper. Additionally, we provide a test server to
test the scanner against (not part of the artifact, but used to
evaluate it). For both tools we provide the source code, Dock-
erfiles, and Docker images. We recommend using the Docker
images, as they ensure a reproducible environment.

A.2.1 Security, privacy, and ethical concerns

We are not aware of any exploitable issues in the tool. It should
be secure to run on your machine. To evaluate a TLS server,
TLS-Scanner needs to connect with that server, effectively
revealing your IP address. The scanner also sends an HTTP
request to the server which includes TLS-Attacker as the user
agent.

The scan initiates multiple TLS connections to the server.
Depending on the number of threads (option -threads) you
could overwhelm the server. In our scans, we ensured this

does not happen by scanning multiple servers at once with
a shared limited threadpool (done by TLS-Crawler1). When
using the scanner, use a low number of threads. The test server
we provide is single threaded, so only a single (connection)
thread should be used there.

Any data our probes exfiltrate from the ticket is already
known to the scanner. However, if it is able to exfiltrate data
from a ticket, this indicates a severe issue (as outlined in our
paper) that you should report to the server administrator.

Test Server The test server uses an outdated version of
BoringSSL and adds further parameters to the included server.
The ticket decryption is implemented such that it is vulnerable
to padding oracle attacks if the authenticity of the ticket is not
ensured (e.g., no MAC). We recommend running it inside an
isolated environment.

A.2.2 How to access

We provide a repository summarizing our ar-
tifact at https://github.com/tls-attacker/
We-Really-Need-to-Talk-About-Session-Tickets/
tree/ad64fe34f41894f1aa5bbec65cf0446cdb0ad3f8.
This includes the TLS-Scanner source code2 and a testserver.
Further, this also contains the Dockerfiles to build Docker
images of both components yourself. Alternatively, you
can get the Docker image from Docker Hub.3 Within this
document, we describe how to run the scanner using maven
and the server using docker. Additional topics, such as using
the scanner with Docker or the server from source, are
covered in the artifact repo’s readme.

1https://github.com/tls-attacker/TLS-Crawler
2https://github.com/tls-attacker/TLS-Scanner/commit/

a0d4c1a910f0eb3e5ee3e28c9435818820c67919
3snhebrok/tls-scanner-ae and snhebrok/vulnerable-bssl

https://github.com/tls-attacker/We-Really-Need-to-Talk-About-Session-Tickets/tree/ad64fe34f41894f1aa5bbec65cf0446cdb0ad3f8
https://github.com/tls-attacker/We-Really-Need-to-Talk-About-Session-Tickets/tree/ad64fe34f41894f1aa5bbec65cf0446cdb0ad3f8
https://github.com/tls-attacker/We-Really-Need-to-Talk-About-Session-Tickets/tree/ad64fe34f41894f1aa5bbec65cf0446cdb0ad3f8
https://github.com/tls-attacker/TLS-Crawler
https://github.com/tls-attacker/TLS-Scanner/commit/a0d4c1a910f0eb3e5ee3e28c9435818820c67919
https://github.com/tls-attacker/TLS-Scanner/commit/a0d4c1a910f0eb3e5ee3e28c9435818820c67919
https://hub.docker.com/r/snhebrok/tls-scanner-ae
https://hub.docker.com/r/snhebrok/vulnerable-bssl

A.2.3 Hardware dependencies

None.

A.2.4 Software dependencies

For TLS-Scanner a Java 11 development kit and maven are
required.4 To run the server using Docker, Docker needs to
be installed. You can also build the image yourself using the
Dockerfile contained in our repository or pull it from Docker
Hub.

A.2.5 Benchmarks

None.

A.3 Set-up

We provide multiple ways to set up the scanner and test server.
Within this document we cover building the scanner from
source using maven.

A.3.1 Installation

Using Source and Maven You need to clone the code and
then compile it using maven. This automatically fetches all
dependencies.

git clone --recurse-submodules
https://github.com/tls-attacker/
We-Really-Need-to-Talk-About-Session-Tickets

↪→

↪→

cd We-Really-Need-to-Talk-About-Session-Tickets
git checkout c71fb839bd4ad2dc00cbb1a578d7d4254f8aec17
mvn clean package

A.3.2 Basic Test

To verify that the scanner is initialized correctly run the scan-
ner without any arguments:

cd TLS-Scanner/apps
java -jar TLS-Server-Scanner.jar

If everything works correctly this should print an error stating
that the provided parameters could not be parsed (including
a stack trace). This error message should state that the op-
tion -connect is required and also include a stack trace. The
available options should be printed afterward.

If you pass the -connect flag followed by a host, the spec-
ified host should be scanned.

If an error occurs, ensure you are using Java 11 to build
and run the project. Other versions usually fail.

4More information about the TLS-Attacker projects and their re-
quirements can be found under https://github.com/tls-attacker/
TLS-Attacker-Description.

A.3.3 Test Server

The Docker image is available at Docker Hub
as snhebrok/vulnerable-bssl5 with the tag
sessionticket-ae. Running the image will automat-
ically pull it. You can still pull it explicitly with docker
pull snhebrok/vulnerable-bssl:sessionticket-ae.

A.4 Evaluation workflow
A.4.1 Major Claims

To evaluate the ecosystem in our paper, we used TLS-Scanner.
We claim to be able to detect different vulnerabilities related
to TLS session tickets:
(C1): We can detect a variety of default keys for encryption

and authentication. This is shown in experiment (E1).
(C2): We can detect padding oracle vulnerabilities. This is

shown in experiment (E2).
(C3): We can detect missing ticket authentication. This is

shown in experiment (E2).

A.4.2 Experiments

TLS-Scanner scans a single server at a time. For our experi-
ments we propose to scan our test server. You can also scan
other servers, but these might not be vulnerable to our pro-
posed vulnerabilities. All time estimates were created using
a laptop with an i7-1165G7 and 32G of RAM. Each scan
should take about five to ten minutes with the parameters we
recommend below.

Basic Test Execution For each experiment we describe
which parameters to pass to the test server for this experi-
ment. After the test server is started, you need to run TLS-
Scanner against the server. The scan might take some min-
utes and finishes by outputting the results. This also contains
results not related to session tickets. The results related to
session tickets are located in the section with the heading
SessionTicketEval. We describe what this section should
contain for each experiment. For all experiments, there are
some parameters that you should always set, which we outline
below.

Running the Scanner For all tests, you need to execute the
scanner against the testserver as follows:

java -jar TLS-Server-Scanner.jar -connect
[host] -scanDetail NORMAL↪→

[host] is the host to scan (including port). When us-
ing the docker test server as specified, this should be
172.17.0.1:8000.6 The detail affects how many test vectors

5https://hub.docker.com/r/snhebrok/vulnerable-bssl
6Check whether docker assigns this IP to one of your network interfaces.

You can also use any other IP assigned to your device.

https://github.com/tls-attacker/TLS-Attacker-Description
https://github.com/tls-attacker/TLS-Attacker-Description
https://hub.docker.com/r/snhebrok/vulnerable-bssl

are tested against the server. For our paper we used DETAILED,
but all experiments work with NORMAL (the default value) as
well.

Running the Test Server For the test server we recommend
running it as follows:

docker run --rm -it -p8000:8000
snhebrok/vulnerable-bssl:sessionticket-ae
s_server -accept 8000 -loop -www

↪→

↪→

Depending on the experiment, further parameters need to be
added.

(E1) Detecting default keys:
[5 human-minutes + 5 compute-minutes]
Scan a server whether it uses one of our proposed weak
keys. The scanner outputs the detected key and format
of the ticket.
Test Server Preparation: The test server needs to use
a weak key. Example parameters are
-ticketEnc AES-128-CBC
-ticketEncKey 00
-ticketHMac SHA256
-ticketHMacKey 00
-ticketHMacKeyLen 32

Results: The summary should contain the following
lines:
Ticket use default STEK (enc) : true
Ticket use default STEK (MAC) : true

Further down is a section Default STEK which contains
details about the detected keys for encryption and HMAC
(if you set both groups of parameters). This includes the
detected format, algorithm, and key. For encryption, this
also contains which secret is included in the ticket.
No padding oracle or MAC check issues should be found
as an Encrypt-then-Mac scheme is used (albeit with a
weak key).
Within the repository’s readme we describe how to man-
ually verify this attack using OpenSSL.

(E2) Missing Authentication and Padding Oracles:
[5 human-minutes + 15 compute-minutes]
Scan a server whether it is not properly authenticating
its tickets and even has a padding oracle vulnerability.
Test Server Preparation: The test server must not use
authentication (HMAC) for the ticket. To detect a
padding oracle vulnerability, a CBC cipher must be used.
Example parameters are
-ticketEnc AES-256-CBC
-ticketHMac None

Results: The summary should contain the following
lines:
No (full) MAC check : true
Vulnerable to Padding Oracle : true

Further down is a section Manipulation. This sum-
marizes the behavior the server showed when induc-
ing bitflips into a ticket. Several behaviors are pre-
classified:

A The modified ticket was accepted. The authenticity
of the ticket was hence not verified (completely).

The modified ticket was accepted, but key material
unknown to the scanner was used. That is, the server
recovered some corrupted key material from the
modified ticket.

_ The modified ticket was rejected, and a normal hand-
shake was performed. This should be the case if the
authenticity of the ticket is properly ensured.

• Other characters are explained in the results.
Further down is a subsection Padding Oracle which
contains details stating at which position the oracle was
found. This also includes the recovered plaintext, as well
as what value was XOR-ed at which position to recover
the plaintext. Further down is a summary of the observed
behavior difference per offset (when modifying the last
byte). Note that multiple offsets might show different
behavior, but not all are necessarily caused by a valid
padding oracle vulnerability. This is internally verified
by trying to recover the second byte. As the Overall
Result is TRUE, this second byte was found.

A.5 Notes on Reusability
We believe the source code can help other re-
searchers to more easily detect default keys in
encrypted blobs with a possibly unknown for-
mat (classes SessionTicketEncryptionFormat,
SessionTicketMacFormat, and DefaultKeys). This
approach could be applied to other protocols where one party
chooses key material to protect a payload.

The code is currently under internal review and will be
merged into the main versions of TLS-Scanner and TLS-
Anvil7 in the future. This allows researchers to more easily
scan for issues related to session tickets. In combination with
TLS-Crawler8, this also allows for performing larger scans.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

7Maehren et al. at Usenix 22
8We used https://github.com/tls-attacker/TLS-Crawler/

commit/d0c6e1e3d6a7168da2181ab74fa0d33b13b426f2 in our scans.

https://secartifacts.github.io/usenixsec2023/
https://www.usenix.org/conference/usenixsecurity22/presentation/maehren
https://github.com/tls-attacker/TLS-Crawler/commit/d0c6e1e3d6a7168da2181ab74fa0d33b13b426f2
https://github.com/tls-attacker/TLS-Crawler/commit/d0c6e1e3d6a7168da2181ab74fa0d33b13b426f2

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test
	Test Server

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

