ARTIFACT
EVALUATED

ARTIFACT
EVALUATED

ARTIFACT
EVALUATED

susenix yusenix susenix
ASSOCIATION ASSOCIATION @ Hssociation

REPRODUCED

AVAILABLE

USENIX’23 Artifact Appendix: Security Analysis of MongoDB
Queryable Encryption

Zichen Gui, Kenneth G. Paterson, and Tianxin Tang
Department of Computer Science, ETH Zurich, Zurich, Switzerland

August 9, 2023

A Artifact Appendix

A.1 Abstract

This artifact appendix is provided alongside our paper. In
this appendix, we describe the two phases of our attack on
MongoDB QE. The first phase is leakage extraction (Section
4), followed by the second phase inference attacks (Section
7). Due to the complications with QE, leakage extraction is
not feasible on a large-scale database, and we had to work
with simulated leakage in our experiments (see Appendix B).
Therefore, we provide two procedures for leakage extraction,
one for real leakage (E1), and the other for simulated leakage
(E2). The procedures for inference attacks exploiting leak-
age from queryLog and opLog can be found in E3 and E4,
respectively.

A.2 Description & Requirements

Requirements. Leakage simulation and inference attacks re-
quire resources 10 GB RAM, 16 GB disk, and ~ 3.3 GHz
CPU on a single core (is recommend). For small-scale leak-
age extraction (e.g., 3K - 10K records), the same specification
is adequate. However, full-scale leakage extraction involv-
ing building a database containing 3M records, requires 50
GB RAM and 600 GB disk. The instructions in this artifact
only work for Linux/Unix systems. Ubuntu 22.04 is used for
evaluation.

A.2.1 Security, privacy, and ethical concerns

In our experiments, we use the anonymized American Com-
munity Survey (ACS) micro data on the person level from
2012 and 2013 and the corresponding codebook, publicly
available from https://www.census.gov/programs-surveys/acs/
microdata.html. Our inference attacks do not in any way at-
tempt to deanonymize this data.

A.2.2 How to access

URL. https://gitlab.com/mongodbge/mongo/-/commit/
4e9fc09377£f26e1760fb510a00998£777£d9e0£f4

README.md and FAQ. We provide a README.md in
our code repo for more comprehensive instructions. The
README . md also contains a FAQ section to address common
issues that you may encounter during evaluation.

A.2.3 Hardware dependencies

None.

A.2.4 Software dependencies

Our artifact is evaluated on MongoDB 6.0.7.

General. The links provided above direct you to the pack-
ages of the latest version only. To reproduce our results with
the specific versions of the packages we used in our artifact,
please refer to the following example. The instruction works
specifically for Ubuntu 22.04. We provide further instruction
for other operating systems later.

- mongod from Archive and crypt_shared (6.0.7):
https://www.mongodb.com/download-center/enterprise/
releases

- libmongocrypt (1.7.4): https://www.mongodb.com/docs/
manual/core/csfle/reference/libmongocrypt

- mongoexport (100.7.3): https://www.mongodb.com/docs/
database-tools/installation/installation/

- mongosh (1.10.1):
download/shell

https://www.mongodb.com/try/

- Python 3.10 and the python package dependencies listed
in Section A.3.1.

Example for Ubuntu 22.04.

(6.0.7):
mongodb. com/linux/mongodb-1linux-x86_
64-enterprise-ubuntu2204-6.0.7.tgz
(6.0.7):

mongodb.com/linux/mongo_crypt_shared_vl-linux-x86_

- mongod Archive https://downloads.

- crypt_shared https://downloads.

64-enterprise-ubuntu2204-6.0.7.tgz

- libmongocrypt (1.7.4): Please refer to README.md in
the code repository for the commands.

https://www.census.gov/programs-surveys/acs/microdata.html
https://www.census.gov/programs-surveys/acs/microdata.html
https://gitlab.com/mongodbqe/mongo/-/commit/4e9fc09377f26e1760fb510a0b998f777fd9e0f4
https://gitlab.com/mongodbqe/mongo/-/commit/4e9fc09377f26e1760fb510a0b998f777fd9e0f4
https://www.mongodb.com/download-center/enterprise/releases
https://www.mongodb.com/download-center/enterprise/releases
https://www.mongodb.com/docs/manual/core/csfle/reference/libmongocrypt
https://www.mongodb.com/docs/manual/core/csfle/reference/libmongocrypt
https://www.mongodb.com/docs/database-tools/installation/installation/
https://www.mongodb.com/docs/database-tools/installation/installation/
https://www.mongodb.com/try/download/shell
https://www.mongodb.com/try/download/shell
https://downloads.mongodb.com/linux/mongodb-linux-x86_64-enterprise-ubuntu2204-6.0.7.tgz
https://downloads.mongodb.com/linux/mongodb-linux-x86_64-enterprise-ubuntu2204-6.0.7.tgz
https://downloads.mongodb.com/linux/mongodb-linux-x86_64-enterprise-ubuntu2204-6.0.7.tgz
https://downloads.mongodb.com/linux/mongo_crypt_shared_v1-linux-x86_64-enterprise-ubuntu2204-6.0.7.tgz
https://downloads.mongodb.com/linux/mongo_crypt_shared_v1-linux-x86_64-enterprise-ubuntu2204-6.0.7.tgz
https://downloads.mongodb.com/linux/mongo_crypt_shared_v1-linux-x86_64-enterprise-ubuntu2204-6.0.7.tgz

- mongoexport (100.7.3): nttps://fastdl.mongodb.org/
tools/db/mongodb-database-tools-ubuntu2204-x86_64-100.
7.3.tgz

- mongosh (1.10.1):
compass/mongodb-mongosh_1.10.1_amd64.deb

- Python 3.10 and the python package dependencies listed

in Section A.3.1.

https://downloads.mongodb.com/

Similarly, for other operating systems/architectures, you
can obtain the packages of specific versions by modifying
the operating system/architecture of the links above. See the
download links in "General" for examples.

A.2.5 Benchmarks

We use ACS 2012 as auxiliary data and ACS 2013 as recovery

target in our experiments.

ACS 2012 nttps://www2.census.gov/programs-surveys/acs/
data/pums/2012/1-Year/csv_pus.zip

ACS 2013 https://www2.census.gov/programs-surveys/acs/
data/pums/2013/1-Year/csv_pus.zip

A.3 Set-up
A.3.1 Installation

1. Download or git clone the repo mongo from the pro-

2. Download csv_pus.zip for ACS 2012, ACS 2013, re-
spectively listed in Section A.2.5. Unzip the files and get
ssl2pusa.csv, ssl2pusb.csv, ssl3pusa.csv, and
ssl3pusb.csv.

3. Place ssl2pusa.csv and ssl2pusb.csv in
mongo/acs_data/2012_person_records;
place ssl3pusa.csv and ssl3pusb.csv in
mongo/acs_data/2013_person_records.

4. Work in mongo/src/ and create a python virtual envi-
ronment and install the required packages:

e python3 -m pip install --user virtualenv
* python3 -m venv env

* source env/bin/activate

* pip3 install -r requirements.txt

5. Install mongod, crypt_shared, libmongocrypt,
mongoexport, mongosh; urls are listed in Section A.2.4.

6. Configure the library dependencies listed in 5 in
mongo/src/parameters.py, from line 53 to line 56.

7. Configure the default MongoDB database path at line 57
inmongo/src/parameters.py. Please specify a direc-
tory that does not require root access.

A.3.2 Basic Test

Working in mongo/src, run python3 check_config.py to
check whether the installation and configuration listed in Sec-
tion A.3.1 are complete.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Real leakage about the data encrypted by QE can be
extracted from opLog alone or from queryLog and en-
crypted document collection (Appendix B).

(C2): Leakage simulations for opLog and queryLog pass
the correctness check, respectively, matching the real
leakage (Appendix B).

(C3): The inference attack exploiting simulated query leak-
age (under uniform and Zipf distributions, with 100, 300,
500 queries per field) from queryLog achieve reasonable
recovery rates (Section 7.2).

(C4): The inference attack exploiting simulated compaction
leakage from opLog achieve reasonable recovery rates
(Section 7.2).

A.4.2 Experiments

We have repeated our experiments for statistical reasons. The
number of experiments can be adjusted based on time and
resource constraints. Please refer to README . md for details.
Note that E3 and E4 can be run concurrently to reduce
the waiting time.

Sample output. Sample output for E1-E4 is provided in

mongo repo. E.g., E1_sample_output.txt.

(E1): Leakage extraction (at a small scale). 5 human-minutes
+ 10 compute-minutes + 16 GB disk. The default number
of records for this artifact is 3K. You can adjust the
number of records using —-1imit argument. A full-scale
leakage extraction with 3M records may take 2-4 days.
Preparation: Working in mongo/src, run
python3 export_acs_data_sample.py to gen-
erate auxiliary information.

Execution: python3 main.py to collect queryLog
and opLog, extract leakage, check its correctness for the
sample dataset.

Results: Real leakage about the data can be extracted
from logs successfully.

(E2): Leakage simulation. 5 human-minutes + 40 compute-
minutes (depending on the number of experiments) + 16
GB disk:

Preparation: Make sure the setup stage in Section A.3
is complete. Work in mongo/src.

Execution: python3 export_acs_data_simulated.
--start=0 --end=1 generates one instance of simu-
lated leakage.

Results: Leakage is simulated for opLog and queryLog
correctly.

(E3): Inference attack with simulated query leakage from
queryLog. 5 human-minutes + 3 compute-hours (or 2
minutes if using --fast) + 16 GB disk:

Preparation: Work in mongo/src_attack. (Optional)
Core attack parameters such as the number of it-

https://fastdl.mongodb.org/tools/db/mongodb-database-tools-ubuntu2204-x86_64-100.7.3.tgz
https://fastdl.mongodb.org/tools/db/mongodb-database-tools-ubuntu2204-x86_64-100.7.3.tgz
https://fastdl.mongodb.org/tools/db/mongodb-database-tools-ubuntu2204-x86_64-100.7.3.tgz
https://downloads.mongodb.com/compass/mongodb-mongosh_1.10.1_amd64.deb
https://downloads.mongodb.com/compass/mongodb-mongosh_1.10.1_amd64.deb
https://www2.census.gov/programs-surveys/acs/data/pums/2012/1-Year/csv_pus.zip
https://www2.census.gov/programs-surveys/acs/data/pums/2012/1-Year/csv_pus.zip
https://www2.census.gov/programs-surveys/acs/data/pums/2013/1-Year/csv_pus.zip
https://www2.census.gov/programs-surveys/acs/data/pums/2013/1-Year/csv_pus.zip

erations can be set from line 12 to line 29 of

mongo/src_attack/attack.py.

Execution: If using simulated leakage

from querylLog generated in E2, then run:

python3 attack.py --uniform n for n queries

from uniform distribution, n in {100, 300, 500}.

Using —-zipf n for Zipf distribution.

Results: The inference attack using the simulated query

leakage achieves a reasonable recovery rate (see C3).
(E4): Inference attack with simulated compaction leakage

from opLog. 5 human-minutes + 14 compute-hours (or

20 minutes if using -—-fast) + 16 GB disk:

Preparation: Same as in E3.

Execution: python3 attack.py --oplog

Results: The inference attack using simulated com-

paction leakage from opLog achieves a reasonable re-

covery rate (see C4).

A.S Acknowledgement

We are grateful to the anonymous reviewers for their contribu-
tions in the artifact evaluation process. By incorporating their
suggestions and refining the artifact, we have significantly
enhanced its quality!

A.6 Version

Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found
at https://secartifacts.github.io/usenixsec2023/.

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Acknowledgement
	Version

