
USENIX’23 Artifact Appendix: GigaDORAM: Breaking the Billion
Address Barrier

Brett Falk*

University of Pennsylvania
Rafail Ostrovsky*

UCLA
Matan Shtepel*

UCLA
Jacob Zhang*

UCLA

A Artifact Appendix

A.1 Abstract

The artifact for the USENIX’23 paper "GigaDORAM: Break-
ing the Billion Address Barrier" is this GitHub repository.
The repository contains a C++ implementation of the Gi-
gaDORAM protocol, benchmarking scripts, and explanations
helpful to reproducing the experiments in the paper. The ex-
planations are composed of a standard README file and a
detailed video walkthrough which we believe to be the most
convenient way to install GigaDORAM and reproduce our
results.

A.1.1 What is GigaDORAM?

GigaDORAM is a 3-party state-of-the-art Distributed ORAM
protocol (DORAM) protocol. DORAM is a stateful mul-
tiparty cryptographic protocol. We envision the proto-
col holding a secret shared state, Memory, with N 0-
initialized cells, Memory[0],...,Memory[N-1]. An execu-
tion of the protocol takes secret shared variables Xquery,
Ynew, IsWrite as input. The output of the protocol is se-
cret shared Memory[Xquery]. If IsWrite=1, a stateful update
Memory[Xquery] := Ynew is preformed. Under certain non-
collusion assumptions, an execution of the protocol does not
reveal any information to the participating parties.

GigaDORAM is a 3-party DORAM protocol specialized
for the low-latency, large N setting. In these settings, GigaDO-
RAM significantly outperforms previous protocols. In other
settings, GigaDORAM preforms comparably to previous pro-
tocols. See the paper, and in particular Section 9, for more
details.

A.2 Description & Requirements

Roughly speaking, we benchmarked GigaDORAM in 2 dif-
ferent settings

• Single machine tests: we execute GigaDORAM through
3 processes on the same machine. This enables us to
artifically restrict the network between the machines

*Authors are in alphabetical order.

processes via the tc command and benchmark the per-
formance of GigaDORAM in a variety network settings.

• Multi machine tests: we execute GigaDORAM on 3
different AWS EC2 instances in the same AWS region.
These tests are meant to demonstrate the “real world”
potential of GigaDORAM.

In Section A.3 and Section A.4 we show how to set-up and
execute both kinds of tests, respectively. Again, we suggest
that the best way to follow along with setup, installation, and
experiment-replication is our detailed video walkthrough

A.2.1 Security, privacy, and ethical concerns

single_server_experiments.py runs sudo tc qdisc
replace dev lo root to simulate network latency and
bandwidth limits on the loopback interface, which can slow
down other programs running on the machine. We recommend
running on a dedicated VM. If anything strange happens, the
network changes can be undone with sudo tc qdisc del
dev lo root

A.2.2 How to access

Our artifact can be accessed via this GitHub repository. It is
not our development repository and will not be evolving.

A.2.3 Hardware dependencies

For evaluation, a processor supporting the Intel SSE2 instruc-
tion set is and we recommend at least 8 CPU cores and 8GB
of RAM. While local evaluation of our artifact is possible,
benchmarking on AWS is necessary for replicating our results.
If AWS credits are not available to reviewers, please reach
out to us via the anonymous submission portal.

A.2.4 Software dependencies

• A Linux machine with processor supporting the Intel
SSE2 instruction set.

• sudo access is unfortunately required; this isn’t an issue
on AWS.

1

https://github.com/jacob14916/GigaDORAM-USENIX23-Artifact
https://www.youtube.com/watch?v=ZRLwktR-1cI&ab_channel=JacobZhang
https://en.wikipedia.org/wiki/Secret_sharing
https://www.youtube.com/watch?v=ZRLwktR-1cI&ab_channel=JacobZhang
https://github.com/jacob14916/GigaDORAM-USENIX23-Artifact


• For compilation, the EMP-toolkit library. Follow the
instructions at EMP-toolkit repository to install EMP
and its dependencies.

– EMP’s dependencies are extremely basic (python3
cmake git build-essential libssl-dev)
and are all needed to build GigaDORAM. Those
can be installed using the apt package manager.

• On a typical Linux system there are no dependencies
needed to run the compiled binary.

A.2.5 Benchmarks

No data is needed to run our tests.

A.3 Set-up
In this section we describe set-up for single-server GigaDO-
RAM tests, multi-server GigaDORAM tests, and tips for op-
tionally testing other DORAM constructions.

A.3.1 Installation

Single server tests.

1. Clone our repository

2. Run compile.sh. If this fails, make sure you’ve in-
stalled EMP-toolkit.

Multi server tests. The multi-machine tests are designed to
be run on AWS EC2. Warning: Follow the directions below
carefully; it is easy to miss something which will cause the
benchmarks to not be able to run.

• You will need choose an AWS region and create and
start AWS EC2 instances named DORAM_benchmark_1,
DORAM_benchmark_2, DORAM_benchmark_3 in that re-
gion.

– Use the same SSH key for access to all 3 instances,
as it will be an argument to the script later.

– Set security group settings to allow TCP traffic
between the 3 instances.

– We used c5n.metal instances, which guaranteed
that our parties were not running on the same phys-
ical host, and also provided high multi-threaded
performance.

– We used Ubuntu 22.04 but any modern enough
Linux distribution should work. Recall that Intel
processors are required.

• For most tests, the instances should be created in a cluster
placement group. A quick how to is covered in our video
tutorial. For more information about cluster placement
groups, see here.

• In addition to the requirements for single server tests, the
AWS CLI (package awscli in apt) needs to be installed
on the machine used for builds.

• After installing, configure your region and access keys
with aws configure.

• Additionally, you will need to add these lines to
~/.ssh/config/ on the build machine: Host *
StrictHostKeyChecking no

Without disabling StrictHostKeyChecking, the experi-
ment script will be unable to ssh to new hosts in the
background, since user input would be required to con-
tinue connecting to a new host.

• Nothing needs to be installed on the benchmark in-
stances!

Optional: other DORAM constructions. In this section,
we briefly comment on the procedure we took to install and
set-up other DORAM constructions.

• DuORAM: We benchmark DuORAM via their well docu-
mented dockerization.Detailed information can be found
in their README.

• 3PC-ORAM: We benchmarked 3PC-ORAM via the
convenient dockerization graciously provided by the
DuORAM team. Again, details can be found in the
README.

• Sqrt ORAM, Circuit ORAM, fss-FLORAM, cprg-
FLORAM: We benchmark Sqrt ORAM, Circuit ORAM,
fss-FLORAM, and cprg-FLORAM via Doerner and
shelats’ original code. Due to a reliance on the somewhat
aged obliv-c framework, we ran into some difficulties
running their code. We try to give some helpful tips
here (note: some of this steps may be redundant or
incomplete – we simply note here what worked for us):

– We started two Ubuntu 18.04.6 EC2 instances in
a cluster placement group, one to be the “server”
and the other to be the “client”

– To install the needed old version of ocaml,
run sudo apt install opam, opam switch
create 4.06.0, and eval $(opam env
--switch=4.06.0)

– To install the needed old version gcc, sudo apt
install -y gcc-9 g++-9 cpp-9

– Then follow the obliv-c README to install.

– Then follow the FLORAM README to install

– PFEDORAM: PFEDORAM is proprietary, and
we obtained benchmarks directly from Bingsheng
Zhang, one of the authors of the paper.

2

https://github.com/emp-toolkit/emp-tool
https://github.com/jacob14916/GigaDORAM-USENIX23-Artifact
https://www.youtube.com/watch?v=ZRLwktR-1cI&ab_channel=JacobZhang
https://www.youtube.com/watch?v=ZRLwktR-1cI&ab_channel=JacobZhang
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html
https://git-crysp.uwaterloo.ca/avadapal/duoram
https://git-crysp.uwaterloo.ca/iang/circuit-oram-docker/src/usenixsec23_artifact
https://gitlab.com/neucrypt/floram
https://github.com/samee/obliv-c/
https://github.com/samee/obliv-c/
https://gitlab.com/neucrypt/floram


A.3.2 Basic Test

Single server. ./benchmark_doram_locally.sh
100us 10Gbit -prf-circuit-filename
LowMC_reuse_wires.txt
-build-bottom-level-at-startup false
-num-query-tests 10 -log-address-space
20 -num-levels 3 -log-amp-factor 4
-num-threads 4

Multi server. ./run_3_server_experiment.sh
../my_key.pem -prf-circuit-filename
LowMC_reuse_wires.txt
-build-bottom-level-at-startup false
-num-query-tests 10 -log-address-space
20 -num-levels 3 -log-amp-factor 4
-num-threads 20

Optional: other DORAM constructions. Other
DORAMs contain simple tests in their respective
READMEs

A.4 Evaluation workflow

A.4.1 Major Claims

The main claim of our paper is the performance of Gi-
gaDORAM that can be seen in various network settings
/ configurations. These can be found in Figure 5, Figure
6, Table 1, and Table 2.

A.4.2 Experiments

Below we provide descriptions of how to execute our
main results. In the repositories README we also pro-
vide descriptions on how to run any set of parameters in
both the single server and multiserver setting

(E1): Reproducing Figures 6a and 6b, 10 human-
minutes + 1.5 compute hour + 20 compute threads
and 20 GB RAM. These tests reproduce the per-
formance of GigaDORAM in simulated varying
latency and varying bandwidth settings. :
Preparation: noted in Section A.3.
Execution: The single server experiments are run
by ./single_server_experiments.py which
prints usage information with the -h flag.
To reproduce the tests used to generate the GigaDO-
RAM data in Figures 6a and 6b in the paper, run
./single_server_experiments.py Figure6a
./single_server_experiments.py Figure6b
We ran these tests on a machine with 96 CPUs and
saw best results with 20 threads per party (which
is the default). If you are running on a smaller
machine, you should use a num_threads which is

less than 1/3 the number of CPUs available, for
example:
$ ./single_server_experiments.py Figure6a

--threads 2
$ ./single_server_experiments.py Figure6b

--threads 2
Results: The concatenated output from
all experiments will be written to
single_server_results/doram_timing_report${i}.txt
for party i in 1, 2, 3.
These files are are human readable and formatted
in blocks as, for example:
DORAM Parameters
Number of queries: 1000
Build bottom level at startup: 0
Log address space size: 16
Data block size (bits): 64
Log linear level size: 8
Log amp factor: 4
Num levels: 3
PRF circuit file: LowMC_reuse_wires.txt
Num threads: 1

Timing Breakdown
Total time including builds: 2.89467e+06 us
Time spent in queries: 2.83478e+06 us
Time spent in query PRF eval: 1.21668e+06 us
Time spent querying linear level: 751191 us
Time spent in build PRF eval: 8775 us
Time spent in batcher sorting: 0 us
Time spent building bottom level: 0 us
Time spent building other levels: 20811 us

SUMMARY
Total time including builds: 2.89467e+06 us
Total number of bytes sent: 2.7828e+07
Queries/sec: 345.462
The SUMMARY section is the most important to look
at, as it gives the total time and communication to
run the test.
WARNING: single_server_experiments.py runs
sudo tc qdisc replace dev lo root to sim-
ulate network latency and bandwidth limits on the
loopback interface, which can slow down other
programs running on the machine. We recommend
running on a dedicated VM. If anything strange
happens, the network changes can be undone with
sudo tc qdisc del dev lo root

(E2): Multi server tests, reproducing Figure 5, Table 1,
and Table 2, 10 human-minutes + 1 compute-hour
+ 3 strong, running AWS EC2 machines
Preparation: Noted in Section A.3.
Execution: ./multi_server_experiments.py
-h for syntax help. Run the following experiments

3

https://github.com/jacob14916/GigaDORAM-USENIX23-Artifact#readme


one by one, checking the results output after each
$ ./multi_server_experiments.py Figure5

../my_pem_file.pem
$ ./multi_server_experiments.py Table1

../my_pem_file.pem
$ ./multi_server_experiments.py Table2

../my_pem_file.pem
$ ./multi_server_experiments.py Figure8

../my_pem_file.pem
Results: The concatenated output from
all experiments will be written to
multi_server_results/doram_timing
_report${i}.txt for party i in 1, 2, 3, fol-
lowing the same format as the single server
results.

(Optional E3): reproducing the results of other DO-
RAMs [1.5 human-hours (including setup) + 4
compute-hour + several AWS EC2 instances (num-
ber pending on how many tests are ran in paral-
lel)]: benchmark the performance (in queries/sec)
of other DORAM constructions.
Preparation: Noted in Section A.3.
Execution: In this section, we briefly comment
on the procedure we took to benchmark other DO-
RAM constructions. We describe below which
command For the settings we tested each construc-
tion in and additional discussions, please see Sec-
tion 9, Figures 5 and 6, and Appendix E of the
paper. As each figure describes the benchmark set-
ting, here we only describe the code commands we
used.

– DuORAM: For varying numops and
size, we summed ./run_experiment
read size numops preproc 3P and
./run_experiment readwrite size
numops online 3P to account for both the
online and offline costs of protocol.

– 3PC-ORAM:Using ./run-experiment
size numops we benchmarked 3PC-
ORAM’s reads, which are no more expensive
than writes.

– Sqrt ORAM, Circuit ORAM, fss-FLORAM,
cprg-FLORAM: On the “server” EC2
machine call ./bench_oram_write
-e ADDRESS_SPACE_SIZE -o TYPE -i
1024 and then on the “client” EC2
machine call ./bench_oram_write
-e ADDRESS_SPACE_SIZE -o TYPE -i
1024 -c ADDRESS_OF_SERVER where
ADDRESS_SPACE_SIZE is N, not log_N, TYPE
can be either {sqrt, circuit, fssl,
fssl_cprg}, -i marks the number of writes
to be done, and ADDRESS_OF_SERVER is the
IP address of server (make sure AWS security

group is set to allow for TCP traffic).
– PFEDORAM: PFEDORAM is proprietary,

and we obtained benchmarks directly from
Bingsheng Zhang, one of the authors of the
paper.

Results: Each of these constructions respective
READMEs explains the output format.

A.5 Notes on Reusability

We believe the GigaDORAM implementation and bench-
marks we provide reflect the performance of GigaDO-
RAM accurately in various network settings. However,
our implementation is not production ready. For instance,
it may contain timing attacks and lacks several important
optimizations.

It is possible to execute GigaDORAM on data other than
the (dummy) benchmark data, but at this stage that might
require some slight understanding of our codebase.

To start, we suggest https://github.com/
jacob14916/GigaDORAM-USENIX23-Artifact/
blob/main/doram/doram_array.h in our repository
which, via several subclasses, implements the GigaDO-
RAM protocol. For black-box usage, other than the
constructor, the only function from this class that that
should be called publicly is read_and_write. Unfor-
tunately, because GigaDORAM is a multi-machine,
multi-threaded program, running GigaDORAM is
not as simple as calling the constructor and then the
method. For an example we suggest https://github.
com/jacob14916/GigaDORAM-USENIX23-Artifact/
blob/main/test/doram/doram.cpp which shows
initialization the resources (e.g. Psuedorandom func-
tion seeds) necessary for executing GigaDORAM,
proceeds to construct a GigaDORAM object, and then
calls read_and_write on it repeatedly. To see how
doram.cpp gets called, we suggest https://github.
com/jacob14916/GigaDORAM-USENIX23-Artifact/
blob/main/run_3_server_experiment.sh which,
for example, is called by https://github.com/
jacob14916/GigaDORAM-USENIX23-Artifact/
blob/main/multi_server_experiments.py.

A.6 Version

Based on the LaTeX template for Artifact Evalua-
tion V20220926. Submission, reviewing and badging
methodology followed for the evaluation of this artifact
can be found at https://secartifacts.github.io/
usenixsec2023/.

4

https://github.com/jacob14916/GigaDORAM-USENIX23-Artifact/blob/main/doram/doram_array.h
https://github.com/jacob14916/GigaDORAM-USENIX23-Artifact/blob/main/doram/doram_array.h
https://github.com/jacob14916/GigaDORAM-USENIX23-Artifact/blob/main/doram/doram_array.h
https://github.com/jacob14916/GigaDORAM-USENIX23-Artifact/blob/main/test/doram/doram.cpp
https://github.com/jacob14916/GigaDORAM-USENIX23-Artifact/blob/main/test/doram/doram.cpp
https://github.com/jacob14916/GigaDORAM-USENIX23-Artifact/blob/main/test/doram/doram.cpp
https://github.com/jacob14916/GigaDORAM-USENIX23-Artifact/blob/main/run_3_server_experiment.sh
https://github.com/jacob14916/GigaDORAM-USENIX23-Artifact/blob/main/run_3_server_experiment.sh
https://github.com/jacob14916/GigaDORAM-USENIX23-Artifact/blob/main/run_3_server_experiment.sh
https://github.com/jacob14916/GigaDORAM-USENIX23-Artifact/blob/main/multi_server_experiments.py
https://github.com/jacob14916/GigaDORAM-USENIX23-Artifact/blob/main/multi_server_experiments.py
https://github.com/jacob14916/GigaDORAM-USENIX23-Artifact/blob/main/multi_server_experiments.py
https://secartifacts.github.io/usenixsec2023/
https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	What is GigaDORAM?

	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


