
USENIX’23 Artifact Appendix: Instructions Unclear: Undefined
Behaviour in Cellular Network Specifications

Daniel Klischies*, Moritz Schloegel†, Tobias Scharnowski†

Mikhail Bogodukhov‡, David Rupprecht§, Veelasha Moonsamy*

*Ruhr University Bochum,†CISPA Helmholtz Center for Information Security
‡Independent,§Radix Security

A Artifact Appendix

A.1 Abstract

The artifacts for Instructions Unclear: Undefined Behaviour
in Cellular Network Specifications consist of two main parts:
The TLA+ models used to discover undefined behaviours and
the modified srsRAN implementations used to test smart-
phone implementations of undefined behaviour. For each of
the three LTE features, PWS, SMS, and RRC that we evaluate
against, there is a separate TLA+ model and srsRAN version.

This document describes how to use the models to derive
concrete examples of undefined behaviour in LTE specifi-
cations, and then employ our srsRAN forks to replay these
concrete examples against a commercial UE. This way, one
can verify the presence of undefined behaviour in multiple
LTE feature specifications, as well as determine their real
world impact.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

Evaluating the TLA+ models for undefined behaviour does
not entail any direct risks.

Replaying the counter examples using srsRAN and an SDR
against real UEs, however, imposes multiple risks:

1. You will create a (small) LTE cell; doing so without an
RF shielding box might violate local laws.

2. Since you will replay network packets (PDUs) that you
cannot target to a specific phone, any phone in the vicin-
ity of your SDR will receive these PDUs and might be
temporarily or permanently affected by that PDU. As
our experiments have shown, this may cause a Denial of
Service attack, information leakage, or potentially even
more severe problems. This is why it is absolutely essen-
tial to use an RF shielding box, even if your local laws
would permit running the experiment without it.

3. You might brick any phones that you test. We had at least
one non-reproducible case where a phone temporarily
refused any connection until we reset its NVRAM.

4. If misconfigured, you might brick the SDR that you are
using. To mitigate this, we recommend that you read and
obey its instruction manual carefully.

A.2.2 How to access

The artifact is available for download at https://zenodo.
org/record/8013704.

A.2.3 Hardware dependencies

TLA+ models. The TLA+ models are CPU intensive. To re-
produce the CPU time in Table 1 of our paper, a dual Intel
Xeon Gold 6230R system, totaling 52 cores with 128
GB RAM is required. Using a different setup is possible,
but might result in a different core-hour measurement.
All other results will remain the same, no matter which
CPU is used.

Replaying counter examples via srsRAN. To be able to
replay concrete examples of undefined behaviour, the
following components are required:

• Computer with Gigabit LAN
• Ettus Research USRP X300 with SFP+ to Gigabit

RJ45 module
• 2x Ettus Research VERT900 antennas
• GPSDO for USRP X Series (PCB-Mounted GPS-

Disciplined OCXO)
• Programmable SIM-card (e.g. Sysmocom

sysmoISIM-SJA2)
• RF shielding box (faraday cage)
• Smartphone(s): We evaluate against a Samsung

A41, Samsung S20 5G (European edition), Oppo
A73 5G, Huawei P40 Lite 5G and OnePlus 8. To
reproduce our exact results, all of these phones
must be updated to firmware patch level April 2022

https://zenodo.org/record/8013704
https://zenodo.org/record/8013704

for the SMS and PWS tests and January 2023 to
reproduce the RRC results.

A.2.4 Software dependencies

TLA+ models. To run the TLA+ models, a tlc is required.
We recommend to use https://github.com/pmer/
tla-bin. This requires Linux or a BSD derivative with
at least Java 11 and curl installed.

Replaying counter examples via srsRAN. Installing
srsRAN 4G requires multiple external libraries, drivers,
and firmware for the USRP. As the requirements of our
forks mostly match the requirements of the upstream
version, we recommend following the official setup
guide at https://docs.srsran.com/projects/
4g/en/latest/general/source/1_installation.
html#installation-from-source.
SMS: For the SMS fork, you will also have to install
libosmocore (we tested with version 1.6.0), Python
3.8 and the pyzmq package (version 22.3.0).
Virtualisation: We recommend against using virtual
machines to run srsRAN, as the overhead induced by the
virtualisation interferes with the delicate timing require-
ments of the connection between computer and USRP.

A.2.5 Benchmarks

The data set (concrete counter examples that represent unde-
fined behaviour) used for the UE evaluation is derived via the
TLA+ models. If you do not want to rerun the TLA+ model
checking procedure, you can use the counter examples that
we prepopulated our srsRAN forks with.

A.3 Set-up
A.3.1 Installation

TLA+ models. Assuming that tlc has bin installed via
tla-bin as described in A.2.4, no more setup steps are
required.

Replaying counter examples via srsRAN. Assuming that
all dependencies of srsRAN have been installed as de-
scribed in A.2.4, the next step is compiling one of our
srsRAN forks. To do so, cd into the directory of the fork,
and then run the following commands:

mkdir b u i l d
cd b u i l d
cmake . . /
make
sudo make i n s t a l l
s r s r a n _ i n s t a l l _ c o n f i g s . sh s e r v i c e

The next step is to configure srsRAN correctly.
To do so, please follow the instructions at https:
//docs.srsran.com/projects/4g/en/latest/

app_notes/source/cots_ue/source/index.html.
Since srsRAN has undergone multiple name changes,
files might be named slightly differently in our
forks (e. g., srsran_install_configs.sh instead of
srsran_4g_install_configs.sh).

A.3.2 Basic Test

TLA+ models. Open a shell in the models/rrc directory
of the artifact and run tlc -deadlock rlc. After 5-
20 minutes (depending on your system), this results in
a message saying Model checking completed. No
error has been found.. The number of threads can
be controlled using the -workers n parameter.
You can perform the same test for the SMS and
PWS models. They require that you also supply
-maxSetSize 10000000 and take significantly longer
(e. g., the SMS model will arrive at the same output after
75 days on 100 threads).

Replaying counter examples via srsRAN. Change into
the directory of one of the three srsRAN clones. Then
compile and install according to Section . You can now
run the clone as follows:

1. (Only applies to SMS testing:
cd zmq_server && python3 zmq_server.py).

2. Launch srsepc:
sudo srsepc \
--config /usr/local/share/srsran/epc.conf

3. Launch srsenb:
sudo \
UHD_IMAGES_DIR=/usr/share/uhd/images/ \
srsenb /usr/local/share/srsran/enb.conf

4. On the phone under test: Ensure that your APN is
set to srsapn

5. Open an adb connection to the phone and run ping
8.8.8.8. You should see that 8.8.8.8 is reachable.

If you receive any error regarding missing UHD
firmware, double check with the srsRAN and Ettus doc-
umentation that the supplied path matches the location
of the firmware binaries. This is not specific to our mod-
ifications.
Similarly, if srsRAN does not work or the internet con-
nection of you phone does not work, we recommend
following the srsRAN documentation – unless you are
running a test case (more on that later), our srsRAN forks
operate exactly the same as the upstream versions, such
that all their troubleshooting guides apply.

A.4 Evaluation workflow
A.4.1 Major Claims

For your convenience, we summarize major claims our paper
makes:

https://github.com/pmer/tla-bin
https://github.com/pmer/tla-bin
https://docs.srsran.com/projects/4g/en/latest/general/source/1_installation.html#installation-from-source
https://docs.srsran.com/projects/4g/en/latest/general/source/1_installation.html#installation-from-source
https://docs.srsran.com/projects/4g/en/latest/general/source/1_installation.html#installation-from-source
https://docs.srsran.com/projects/4g/en/latest/app_notes/source/cots_ue/source/index.html
https://docs.srsran.com/projects/4g/en/latest/app_notes/source/cots_ue/source/index.html
https://docs.srsran.com/projects/4g/en/latest/app_notes/source/cots_ue/source/index.html

(C1): Modelling via TLA+ of LTE specification parts is com-
putationally feasible. This is demonstrated by experi-
ment E1, described in Sections 4.1 to 4.3 in the paper,
with the results shown in Table 1 in the paper.

(C2): Using our approach, one can find more undefined
behaviours than using the state-of-the-art approach
“DoLTEst”. This is discussed in Table 2 and Section
5.1 of our paper and demonstrated using Experiment E2.

(C3): Our approach can find undefined behaviours that lead
to real world vulnerabilities. We list these in Table 2
of our paper and describe the vulnerabilities in sections
5.3.1-5.3.3. We reproduce these results in E3.

A.4.2 Experiments

(E1): [< 1 human-hour + up to 180,000 compute-hours]:
Execution: To measure the number of States and CPU
hrs. according to Table 1 of our paper, run tlc with the
same parameters described previously in A.3.2.
To measure the number of Undefined Behaviours and
number of PDUs shown in Table 1, you have to read the
.cfg file of the model (e. g., models/rrc/rrc.cfg)
and modify the corresponding .tla file. The .cfg
file contains a CONSTANTS section listing each test
case. These test cases also correspond to the test
cases listed in Tables 4-6 in the Appendix of our
paper. To verify that each of these test cases is an
undefined behaviour, you change the ConstTestCase
variable in the .tla file to the test case you want
to run. The line in the file is marked by a com-
ment saying Modify this value to choose
the behaviour that you want to generate a
counter example for. An example of a correct
assignment in the RRC model is ConstTestCase ==
RRCConnectionReject_AFTER_SECURITY.
Results: for the first part, the model checking will even-
tually terminate. Note that this takes 180,000 core hours
for the SMS model, so we recommend parallelising us-
ing the -workers flag. If you do not supply a number
of workers, TLC might choose a (suboptimal) number
below the number of available CPU threads. The com-
mand line output should look like the following (for the
RRC model).

3019102 s t a t e s g e n e r a t e d ,
955 d i s t i n c t s t a t e s found ,
0 s t a t e s l e f t on queue .
[. . .]
F i n i s h e d i n 07 min 00 s a t ([. . .])

The number of distinct states (here, 955) and the “Fin-
ished in” time multiplied by the number of threads
should match the corresponding columns in Table 1.
Note that the timing will vary a bit for the shorter test
cases (RRC and PWS), as it is dominated by startup time.

The measurement for the SMS test case is much more
stable as it is dominated by the actual model checking
time.
When evaluating a test case (i. e., after modifying
ConstTestCase), the model checking will terminate
early. You should see the following command line out-
put (this example corresponds to ConstTestCase ==
RRCConnectionReject_AFTER_SECURITY):

E r r o r : I n v a r i a n t I n v a r i a n t i s v i o l a t e d .
E r r o r : The b e h a v i o r up t o t h i s p o i n t i s :
[. . .]
S t a t e 4 : <Next l i n e 603 ,
c o l 9 t o l i n e 713 ,
c o l 43 of module r r c >
[. . .]
/ \ c u r r e n t S e q u e n c e =

<< << " RRCConnect ionSetupMessage " ,
[r r c T r a n s a c t i o n I d e n t i f i e r | − > 0 ,

[. . .]
] >> ,

<< " SecurityModeCommandMessage " ,
[r r c T r a n s a c t i o n I d e n t i f i e r | − > 0 ,

[. . .]
] >> ,

<< " RRCConnec t ionRejec t " ,
[c r i t i c a l E x t e n s i o n s | − >

[. . .]
>> >>

[. . .]

This illustrates that to trigger this undefined behaviour, a
counter example has been generated that contains 3 sep-
arate PDUs and their value assignments: RRCConnec-
tionSetupMessage and SecurityModeCommandMessage
to setup the state, followed by a RRCConnectionReject
that ultimately triggers the transition into an undefined
state. By counting the number of different undefined
behaviours (assignments of ConstTestCase) and the
number of PDUs (entries in currentSequence of the
final state before model checking procedure terminates),
you can reproduce the #UBs and calculate Avg. PDUs
columns of Table 1 in our paper.

(E2): [10 human-hours + 5 compute-hours]:
Execution: Repeat the procedure of setting
ConstTestCase for each undefined behaviour
that we found, to generate a counter example for each of
these. Then, compare these to the RRC section of Table
5 in the DoLTEst paper1. To match our and their test
cases, you must compare their message setup2 to the
sequences generated by our approach.

1https://www.usenix.org/system/files/
sec22-park-cheoljun.pdf

2https://github.com/SysSec-KAIST/DoLTEst/blob/
e2251bfa8cd74f49b23369619722255ed895ef5e/srsepc/src/mme/
fzmanager_epc.cc#L560

https://www.usenix.org/system/files/sec22-park-cheoljun.pdf
https://www.usenix.org/system/files/sec22-park-cheoljun.pdf
https://github.com/SysSec-KAIST/DoLTEst/blob/e2251bfa8cd74f49b23369619722255ed895ef5e/srsepc/src/mme/fzmanager_epc.cc#L560
https://github.com/SysSec-KAIST/DoLTEst/blob/e2251bfa8cd74f49b23369619722255ed895ef5e/srsepc/src/mme/fzmanager_epc.cc#L560
https://github.com/SysSec-KAIST/DoLTEst/blob/e2251bfa8cd74f49b23369619722255ed895ef5e/srsepc/src/mme/fzmanager_epc.cc#L560

Results: For each test case, you should get a different
currentSequence. In the cases where the Guideline
column in Table 2 of our paper contains a number, you
will find a test case in the DoLTEst code that corresponds
to the final message of the generated sequence. For cases
where our table does not show a number, the DoLTEst
authors do not provide a corresponding test case.

(E3): [3 human-hours + 200 compute-hours]:
Execution: To reproduce our CVEs, you will need
to use the PWS and SMS srsRAN forks. To
verify that our test cases match what was gen-
erated by our TLA+ models, open the following
files: srsran/pws/srsenb/src/stack/rrc/rrc.cc
(PWS) and srsran/sms/srsepc/src/mme/sms.cc
(SMS) and compare the values assigned to the structs to
the TLA+-generated counter examples. As the counter
example generation is not deterministic, you might end
up with different assignments (counter examples), but
the same undefined behaviours.
To run the tests, turn on the phone and the SDR, and
start srsenb and srsepc as described previously in
Section A.3.2. For the PWS samples, you have to
schedule SIB12 in the sib.conf, by including 12 in
si_mapping_info and adding a sib12 entry to the
same file. For the SMS test case, zmq_server.py must
be started. To choose a test case, you enter the test cases
index into the enb window (PWS) or enter it in the
zmq_server.py shell (SMS) and press enter. For se-
quences longer than one PDU, you have to repeat this as
many times as there are PDUs in the sequence. The in-
dexes can be found in the code, the ZMQ command line
output, or by using the row indices of our result tables
4 and 5. Remember to restart enb, epc and the phone
between each test case. Also remember to increase the
system time of the phone by a week for each PWS test,
as described in the paper (Section 3.5).
Results: You should see the behaviours described in
Sections 5.3.1, 5.3.2 (PWS), and 5.3.3 (SMS) of our pa-
per. To trigger a modem crash you might have to make
the adjustments described in the paper. To determine
the modem indeed crashed we recommend setting the
phone into debug mode by dialling *#9900# and setting
"Debug Level" to "HIGH" in the resulting hidden menu.
Note that this setting only exists on Samsung phones
(A41 and S20 in our case).
For the OOB read on Samsung S20 phones, please note
that you might have to perform multiple attempts, as
it depends on the current heap memory contents. We
recommend indicating 5-7 pages (first two digits of the
first warning_msg_segment_r9), as this demonstrates
the attack while working relatively reliably.
We have reported the issues to Mediatek and Sam-
sung, and the vulnerabilities might have been patched in
firmware versions released after April 2022.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

