
USENIX Security ’24 Artifact Appendix: InSpectre Gadget: Inspecting
the Residual Attack Surface of Cross-privilege Spectre v2

Sander Wiebing∗ Alvise de Faveri Tron∗ Herbert Bos Cristiano Giuffrida

Vrije Universiteit Amsterdam
∗ Equal contribution joint first authors

A Artifact Appendix

A.1 Abstract

Our paper presents InSpectre Gadget, an in-depth Spectre
gadget analyzer that can be used to identify viable disclosure
gadgets on large codebases. We used such analyzer to uncover
the residual attack surface for cross-privilege Spectre v2 in the
Linux Kernel. We demonstrated the significance of such an at-
tack surface by showing the first end-to-end Spectre v2 attack
against the Linux kernel that does not require eBPF to craft
gadgets (Native BHI). We also showed how the abundance of
both disclosure and dispatch gadgets can be used to bypass all
modern mitigations, including FineIBT. Finally, we measured
the size of speculation windows for both IBT and FineIBT
on a variety of microarchitectures, and the effects of SMT
contention on such windows. This artifact contains all the
code needed to reproduce the analysis of the Linux Kernel, as
well as the PoCs for both Native BHI and the FineIBT bypass
and the experiments on (Fine)IBT speculation windows.

A.2 Description & Requirements

There are four main artifacts that are relevant for this evalua-
tion: 1) Linux Kernel analysis; 2) Native BHI; 3) Speculation-
window experiments; 4) FineIBT bypass. Different require-
ments may apply for the different artifacts.

A.2.1 Security, privacy, and ethical concerns

Running the Linux Kernel analysis does not pose any risk,
and the PoCs for both Native BHI and the FineIBT bypass
are designed to only leak data locally.

A.2.2 How to access

All of our artifacts are available at the following url
https://github.com/vusec/inspectre-gadget/
releases/tag/v1.1, under the experiments/ folder.

A.2.3 Hardware dependencies

There are no hard requirements for running Linux kernel
analysis, however, the amount of available memory can have
a minor impact on the number of reported gadgets due to
execution paths being killed prematurely. For the evaluation
reported in the paper, we used a 13th Gen Intel i9-13900K
with 32 cores and 64GB of RAM.

For the other artifacts, the following CPUs are required for
evaluation.

• CPU: 13th Gen Intel(R) Core(TM) i9-13900K. Re-
quired for Native-BHI, FineIBT bypass, and speculation-
window experiments.

• CPU: 12th Gen Intel(R) Core(TM) i9-12900K. Re-
quired for speculation-window experiments.

• CPU: 11th Gen Intel(R) Core(TM) i7-11800H. Re-
quired for speculation-window experiments.

A.2.4 Software dependencies

The tool itself requires python3, and the test scripts are writ-
ten in bash. The only requirement for the Linux Kernel anal-
ysis is to have docker installed. The analysis was tested on
Ubuntu 23.04.

For Native-BHI, Fine-IBT Bypass and FineIBT Speculation
Window the following requirements apply:

• Linux kernel 6.6.0-rc4, custom build. Source code avail-
able here: https://github.com/torvalds/linux/
archive/refs/tags/v6.6-rc4.tar.gz.

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

To access the artifacts, first clone https://github.com/
vusec/inspectre-gadget and checkout to the v1.1 tag.

https://github.com/vusec/inspectre-gadget/releases/tag/v1.1
https://github.com/vusec/inspectre-gadget/releases/tag/v1.1
https://github.com/torvalds/linux/archive/refs/tags/v6.6-rc4.tar.gz
https://github.com/torvalds/linux/archive/refs/tags/v6.6-rc4.tar.gz
https://github.com/vusec/inspectre-gadget
https://github.com/vusec/inspectre-gadget


git clone git@github.com:vusec/inspectre -
gadget.git

cd inspectre -gadget
git checkout v1.1

To run the scanner locally, you will need to install the
following:

sudo apt-get install python3 python3 -pip bat
pip3 install -r requirements.txt

If bat is not available, you can download it from https:
//github.com/sharkdp/bat.

Finally, you can navigate to the experiments/ folder.
Here you will find a folder for each of the artifacts to evaluate.

Linux Kernel analysis. All scripts can be found under
the scanner-eval/ folder. The only requirement is to have
docker installed on the system.

Native BHI. All scripts are under the native-bhi/ folder.

1. Install dependencies:

cd ../poc-common
./install_dependencies.sh

2. Build and install the kernel. Next reboot into the new
kernel. Note: you have to disable secure boot.

cd ../native -bhi/kernel
./build_kernel.sh

Speculation window experiments. All scripts are under
the speculation-windows/ folder.

1. Install dependencies:

cd ../poc-common
./install_dependencies.sh

2. Build and install the kernel. Next reboot into the new
kernel. Note: you have to disable secure boot.

cd ../speculation -windows/kernel
./build_kernel.sh

Note: If your architecture is not supported by the Ubuntu
config, create a config via make localmodconfig after
you extract the Linux source code. Although we did
not test it, the tests should not be dependent on a kernel
configuration.

3. Please isolate two performance sibling cores by
adding isolcpus= to the kernel boot paramters (.e.g,
isolcpus=2, 3). Adjust the core numbers in the file
src/targets.h. Please reboot the system and verify if
the cores are isolated:

cat /sys/devices/system/cpu/isolated
// should print the isolated cores

FineIBT Bypass. All scripts are under the
fineibt-bypass/ folder.

1. Install dependencies:

cd ../poc-common
./install_dependencies.sh

2. Build and install the kernel with the tested configuration.
The required PoC patch will be applied. Next reboot into
the new kernel. Note: you have to disable secure boot.

cd ../fineibt -bypass/kernel
./build_kernel.sh

A.3.2 Basic Test

The tests/test-cases folder contains a set of simple cases
to verify how the scanner behaves in various situations
(cmove, branches ecc.). A single test can be ran for example
as:

cd tests/test -cases
make
./run-single.sh used_memory_avoider

This should result in the scanner reporting two potential
transmissions, both at address 0x4000014. The two transmis-
sions come from the same expression, but a different part of
the expression is considered secret each time.

It is recommended to install batcat to visualize the result-
ing annotated assembly with batcat output/asm/*.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): We analyzed the Linux kernel version 6.6-rc4 (latest at
time of writing) with the default configuration. We found
a total of 922 and 589 exploitable gadgets in kernel in-
direct call and jump targets (respectively). Section 5.4
of the paper reports results of our analysis (specifically,
Table 1 and Table 2). Moreover, the cumulative distri-
butions of the gadgets found by the scanner are shown
in Figure 5 and Figure 7 of the paper. Experiment (E1)
reproduces the analysis on the Linux kernel and reports
all the relevant numbers.

(C2): We demonstrated the Native BHI PoC can leak arbi-
trary kernel memory at 3.5 kB/sec on the i9-13900K
CPU. This is proven by experiment (E2) which tests the
leakage rate and leaks the shadow file from memory.

https://github.com/sharkdp/bat
https://github.com/sharkdp/bat


(C3): We show that a speculation window is present at the
IBT and FineIBT defense mechanisms. We claim that we
can fit up to 5, 1 and 1 dependent loads in the IBT win-
dow for for the i7-11800H, i9-12900K, and i9-13900K
CPUs, respectively. We claim that we can fit up to 5,
7 and 10 dependent loads in the FineIBT window for
for the i7-11800H, i9-12900K, and i9-13900K CPUs,
respectively. This is proven by experiment (E3).

(C4): We demonstrated that the FineIBT BHI PoC can leak
kernel memory at 18 B/sec on the i9-13900K CPU with
a FineIBT-enabled kernel. This is proven by experiment
(E4) which tests the leakage rate.

A.4.2 Experiments

(E1): [Linux Kernel analysis] [10 compute-hours + 15GB
disk]: This experiment builds an image of the Linux
kernel version 6.6-rc4, extracts all the call and jump
targets, then runs the scanner on the kernel image and
extracts a set of possible gadgets, which are then saved
in a database.
Preparation: Navigate to
experiments/scanner-eval.
Execution: Run run.sh. This will create a docker con-
tainer, install dependencies, and automatically run the
analysis (in particular, scripts/run-eval.sh).
Results: The results of the analysis are available in
the results subfolder after the run. In particular,
stats.txt contains the numbers used for tables and
throughout the evaluation section, while the figs/
subfolder contains the cumulative distribution plots.
gadgets.db contains the database of all the gadgets,
which is queried through the queries contained in
analysis/queries.

(E2): [Native BHI] [10 compute-minutes + 15GB disk]: This
experiment runs the Native BHI PoC on the custom-build
kernel.
Preparation: Navigate to native-bhi/src. Test the
working of the PoC by first skipping the huge-page find-
ing phase:

sudo ./run.sh -p

Execution: Test the leakage rate:

sudo ./run.sh test_rate

Test and time shadow leak:

time sudo ./run.sh leak_shadow

Results: The results (leakage rate and shadow leak) are
printed to the terminal.

(E3): [Speculation window experiments] [8 compute-hours
+ 15GB disk]: This experiment runs the speculation win-
dow experiments on the custom-build kernel.

Preparation: Navigate to speculation-windows. In-
stall the kernel module:

cd kernel_modules/
ibt_tests_kernel_module

sudo ./run.sh

Execution: Run the experiment. Replace the CPU-
NAME with the CPU name (consult lscpu).

cd src
sudo ./run_test.sh CPU-NAME

Results: The results are available in the folder
src/results. To analyze the results:

./analyze_all.sh src/results/

(E4): [FineIBT Bypass] [10 compute-minutes + 15GB disk]:
This experiment runs the FineIBT Bypass PoC on the
custom-build kernel.
Preparation: Navigate to fineibt-bypass/src.
Execution: Test the leakage rate:

sudo ./run_fast.sh

To test the full PoC, including the collision finding phase.
Note that the collision-finding phase can take up to 5
minutes

sudo ./run.sh

Results: The leakage rate is printed to the terminal.

A.5 Notes on Reusability
While the tool has been used specifically to target Spectre-v2
in the Linux Kernel, its structure is general enough to be appli-
cable also to other targets. Full documentation and examples
of how to use the tool can be found in docs/index.html or
at https://vusec.github.io/inspectre-gadget/.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

References

https://vusec.github.io/inspectre-gadget/
https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


