
USENIX Security ’24 Artifact Appendix: PerfOMR: Oblivious Message
Retrieval with Reduced Communication and Computation

Zeyu Liu
Yale University

Eran Tromer
Boston University

Yunhao Wang
Yale University

A Artifact Appendix

A.1 Abstract
Our artifact is a C++ library implementing the constructions
PerfOMR1,PerfOMR2 in [1]. Our main claims produced
from this artifact are the detector runtime of these construc-
tions in Table 1 and Table 2.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Our artifact should not incur any risk to the evaluators regard
of the machines security, data privacy or ethical concerns.
The payload we use to simulate the public data published on
the bulletin board is drawn from random distributions. Note
that we are using an old version of OpenSSL, but it does
not require the root privilege and should only be built in the
directory specified by the evaluator. Despite all these, we still
recommend the evaluators open a fresh GCP instance without
testing our code using their own machines.

A.2.2 How to access

The main code is public on github under ObliviousMesageRe-
trievel repo.

A.2.3 Hardware dependencies

Our main benchmarks should be able to be reproduced on a
normal Google Compute Cloud e2-standard-4 instance type
(4 hyperthreads of an Intel Xeon 3.10 GHz CPU with 16GB
RAM),

A.2.4 Software dependencies

On a Google Compute Cloud e2-standard-4 instance, we run
the benchmarks with boot disk configured with Ubuntu 20.04
LTS operating system and a 256GB disk. Notice that the disk
memory is used to store the large database our experiments
run against.

We also rely on the following softwares and libraries:

• C++ build environment

• CMake build infrastructure

• SEAL library 4.1 and all its dependencies Notice that we
made some manual change on SEAL interfaces to facili-
tate our implementation and thus a built-in dependency
of SEAL is directly included under ’build’ directory.

• PALISADE library release v1.11.2 and all its dependen-
cies, as v1.11.2 is not publicly available anymore when
this repository is made public, we use v1.11.3 in the
instructions instead.

• NTL library 11.4.3 and all its dependencies

• OpenSSL library on branch OpenSSL_1_1_1-stable We
use an old version of OpenSSL library for plain AES
function without the complex EVP abstraction.

A detailed installation script is provided in the
README.md file in our artifact. the datasets we use
are simulated directly when running the experiements and
thus no third-party models/datasets are used.

A.2.5 Benchmarks

We benchmark the main scheme PerfOMR1 (Section 5.3) and
the alternative scheme PerfOMR2 (Section 6). The param-
eters we use are: the number of transactions in the dataset
N = 219,221,223, the number of pertinent messages for the
recipient k = k̄ = 50,100,150, and the batch size v = 8.

A.3 Set-up
A.3.1 Installation

If permission required, please add sudo
before the commands as needed

sudo apt-get update && sudo apt-get install
build-essential # if needed
sudo apt-get install autoconf # if no autoconf
sudo apt-get install cmake # if no cmake
sudo apt-get install libgmp3-dev # if no gmp
sudo apt-get install libntl-dev=11.4.3-1build1
if no ntl
sudo apt-get install unzip # if no unzip

https://github.com/ObliviousMessageRetrieval/ObliviousMessageRetrieval/tree/58c696df7b107ed9a9efdee4d345c7f11673b205
https://github.com/ObliviousMessageRetrieval/ObliviousMessageRetrieval/tree/58c696df7b107ed9a9efdee4d345c7f11673b205

Detector Runtime
(ms/msg)

Clue Key
Size (kB)

Clue Size
(Bytes)

Detector Key
Size (MB)

Digest Size
(Bytes/msg)

Recipient
Runtime(ms)

PerfOMR1
[1, Sec 5] 7.31 2.13 2181 171 2.57 37

PerfOMR2
[1, Sec 6] 39.64 0.56 583 140 1.03 20

Table 1: Comparison of cost metrics. Costs are per recipient. The bulletin contains N = 219 messages, of which k̄ = k = 50 are
pertinent to the recipient. ms/msg and Bytes/msg are all amortized over N messages. Each message has 612 bytes of payload.

k = k̄ = 50

N
Amortized runtime

(ms/msg)
Total runtime

(s)
Amortized digest
size (Bytes/msg)

Total digest
size (MB)

PerfOMR1

219

7.31
3931.65 2.57

1.35221 15868.37 0.48
223 64701.09 0.12

PerfOMR2

219

39.64
20953.45 1.03

0.54221 82826.57 0.26
223 330985.56 0.06

N = 219

k = k̄
Amortized runtime

(ms/msg)
Total runtime

(s)
Amortized digest
size (Bytes/msg)

Total digest
size (MB)

PerfOMR1

50 7.31 3931.65 2.57 1.35
100 9.29 4874.03 4.71 2.47
150 11.15 5847.55 9.34 4.67

PerfOMR2

50 39.96 20953.45 1.03 0.54
100 41.58 21797.76 1.63 0.81
150 42.85 22465.38 2.16 1.08

Table 2: Performance of our constructions when N and k = k̄
varies.

If you have the PERFOMR_code.zip directly,
put it under ~/OMR and unzip it into
ObliviousMessageRetrieval dir, otherwise:
mkdir -p ~/OMR
cd ~/OMR
wget https://github.com/ObliviousMessageRetrieval/
ObliviousMessageRetrieval/raw/3c4245d66806f032517
a9f20447ca78d5419d380/PERFOMR_code.zip

unzip PERFOMR_code.zip

change build_path to where you want the
dependency libraries installed
OMRDIR=~/OMR
BUILDDIR=$OMRDIR/ObliviousMessageRetrieval/build

cd $OMRDIR && git clone -b v1.11.3
https://gitlab.com/palisade/palisade-release
cd palisade-release
mkdir build
cd build
cmake .. -DCMAKE_INSTALL_PREFIX=$BUILDDIR
make
make install

Old OpenSSL used for plain AES function
without EVP abstraction
cd $OMRDIR && git clone -b OpenSSL_1_1_1w
https://github.com/openssl/openssl
cd openssl
./config --prefix=$BUILDDIR
make
make install

Optional
Notice that although we ’enable’ hexl via
command line, it does not take much real
effect on GCP instances and thus does not
have much impact on our runtime
cd $OMRDIR && git clone --branch v1.2.3
https://github.com/intel/hexl
cd hexl
cmake -S . -B build -DCMAKE_INSTALL_PREFIX=$BUILDDIR
cmake --build build
cmake --install build

cd $OMRDIR/ObliviousMessageRetrieval/build
mkdir ../data
mkdir ../data/payloads
mkdir ../data/clues
mkdir ../data/cluePoly
mkdir ../data/processedCM
cmake .. -DCMAKE_PREFIX_PATH=$BUILDDIR
make

A.3.2 Basic Test

The instruction to run a test on our construction is as follows:

./OMRdemos <perfomr1/perfomr2>
<number_of_cores> <number_of_messages_in_bundle>
<number_of_bundles> <number_of_pert_msgs>

For example, a valid sanity test could be:

cd $BUILDDIR
./OMRdemos perfomr1 1 2 32768 50

The expected output should look like this:

Preparing database and paramaters...
Pertient message indices: [3558 ... 32215]

/
| Encryption parameters :
| scheme: BFV
| poly_modulus_degree: 32768
| coeff_modulus size: ... bits
| plain_modulus: 65537
\
Database and parameters prepared.

Preprocess switching key time: 264900272 us.
ClueToPackedPV time: 160386979 us.
PVUnpack time: 675661388 us.
ExpandedPVToDigest time: 218222953 us.

Detector running time: 965717410 us.
Result is correct!

A.4 Evaluation workflow

A.4.1 Major Claims

Our benchmark claims are all in Table 1 and Table 2. The
major one to be reproduced is the detector runtime (note
that clue key and clue sizes can both be calculated with the
parameters we wrote in our paper; digest size can be as well
(with a modulus switching of the final BFV ciphertexts to
∼30 bit ciphertext modulus); the recipient runtime is not a
major claim of our paper and it is not optimized for), up to
some testing variation. In particular, the “detector runtime”
column in Table 1 and the “amortized runtime” in Table 2.

A.4.2 Experiments

Before executing any experimental scripts in this section,
we assume that one has finished the installation steps in Ap-
pendix A.3.1. All the experiments are run with 16GB RAM
and 256GB disk. The expected outcomes should be similar to
the one given under Appendix A.3.2

Notice that the runtime of our experiments are quite long
(the main scheme takes most of the time, while the preparation
of the dataset also takes one to dozens of hours, depending
on how long the dataset is), we highly recommend one to
use screen command to detach all running scripts from the
current session and put it on the back-end, so that one is still
able to re-attach it after the current session times out (which
does happen a lot when running our experiments). We also
recommend one to initialize several fresh instances and run
those experiments in parallel.
(E1): Runtime scaling with the number of transactions N:

the following run scripts aim to reproduce the detector
runtime stated in the top half of Table 1.
Execution:
./OMRdemos perfomr1 1 8 65536 50 # around
3 CPU hours

./OMRdemos perfomr1 1 8 262144 50 # around
6 CPU hours
./OMRdemos perfomr1 1 8 1048576 50 # around
21 CPU hours
./OMRdemos perfomr2 1 8 65536 50 # around 8
CPU hours
./OMRdemos perfomr2 1 8 262144 50 # around
26 CPU hours
./OMRdemos perfomr2 1 8 1048576 50 # around
100 CPU hours

Results: After seeing the detector running time (in
us) in the log, divide it by the number of transactions
(notice that the total number of transactions equals to
number_of_messages_in_bundle multiplied with num-
ber_of_bundles). For example, if by running script
./OMRdemos perfomr1 1 8 65536 50 with log:
Detector running time: 3831655159 us, the
amortized runtime should be 3831655159/(65536 ∗
8) = 7308us= 7.31ms.

(E2): Runtime scaling with the number of pertinent mes-
sages k(k̄): the following run scripts aim to reproduce
the detector runtime stated in the bottom half of Table 1.
Execution:
./OMRdemos perfomr1 1 8 65536 50 # around 3
CPU hours
./OMRdemos perfomr1 1 8 65536 100 # around
3.5 CPU hours
./OMRdemos perfomr1 1 8 65536 150 # around
4 CPU hours
./OMRdemos perfomr2 1 8 65536 50 # around
6.5 CPU hours
./OMRdemos perfomr2 1 8 65536 100 # around
7 CPU hours
./OMRdemos perfomr2 1 8 65536 150 # around
7.5 CPU hours

Results: The calculation steps are exactly the same as
above.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

References

[1] Z. Liu, E. Tromer, and Y. Wang. Perfomr: Oblivious
message retrieval with reduced communication and com-
putation. Cryptology ePrint Archive, Paper 2024/204,
2024. Full version of this paper. Available on print:
https://eprint.iacr.org/2024/204.

https://secartifacts.github.io/usenixsec2024/
https://eprint.iacr.org/2024/204

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

