ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED
susenix

AAAAAAAAAAA

AVAILABLE

REPRODUCED

USENIX Security 24 Artifact Appendix:
SafeFetch: Practical Double-Fetch Protectionwith Kernel-Fetch Caching

Victor Duta

Mitchel Josephus Aloserij

Cristiano Giuffrida

Vrije Universiteit Amsterdam

A Artifact Appendix
A.1 Abstract

The SafeFetch artifact can be used to reproduce the main
claims in our paper as follows: a) SafeFetch mechanics can
thwart kernel double-fetches: we provide a security workflow
showing that SafeFetch can defend against a publicly avail-
able POC for a known double-fetch CVE; b) SafeFetch pro-
vides comprehensive security with low overheads: we supply
a performance measuring workflow that shows SafeFetch
incurs practical overheads across a series of benchmarks (i.e.,
LMBench, OSBench, Phoronix); ¢) SafeFetch achieves com-
prehensive security at a fraction of the performance cost of
state-of-the-art solutions: which we prove by running the
same performance workflow with Midas.

A.2 Description & Requirements

The artifact for SafeFetch is available on Github and con-
tains the following components: a) the code implementing
SafeFetch on the Linux kernel (v5.11); b) precompiled ker-
nel images used to obtain the main security and performance
results outlined in the paper; ¢) the raw performance results
shown in the paper; d) scripts to reproduce the main per-
formance and security results and e) detailed information
regarding the artifact workflow. The artifact workflow for
performance evaluation should be run on real-hardware for
accurate performance results. Similarly, as the POC used in
the security workflow exploits timing differences between
concurrent writes and kernel reads, the security workflow
should also be run on bare-metal.

A.2.1 Security, privacy, and ethical concerns

The CVE exploited in our evaluation also contains the fix, as
such, host machines are not exposed to any security threats
while running the artifact workflow. However, the artifact will
remove prior Phoronix results from the host machine.

A.2.2 How to access

Our artifact is available on GitHub.

e Repository: https://github.com/vusec/safefetch-ae
e Release: v1.0

Steps to access the stable source code for the SafeFetch
prototype on Linux Kernel (v5.11) are explained in the afore-
mentioned repository readme.

A.2.3 Hardware dependencies

The precompiled kernel images used to reproduce the main
results in the paper should be loaded on a real machine for
accurate performance tests. The host machine requires around
40 GiB free disk space, and at least 8GiB of memory. Our
SafeFetch prototype supports machines with 64-bit x86 pro-
cessors, and the results in the paper were obtained on a Intel
17-6700 machine (using 32 GiB of RAM). An SSD is prefered
for storage as it leads to faster compilation should you need
to re-compile the workflow kernels. Moreover, for filesys-
tem benchmarks (e.g., ran during LMBench bandwidth tests)
an SSD assures that the storage speed does not become the
bottleneck for the experiments.

A.2.4 Software dependencies

Running the SafeFetch images requires a guest operating
system which supports GRUB 2.0 (or newer), as the arti-
fact scripts use GRUB utilities to load the precompiled ker-
nels on the host machine (check whether the grub-mkconfig
and update-grub2 are available on the machine). The im-
ages were tested on a machine running Ubuntu 22.04 with
a host Linux kernel version 5.15.0-100-generic. The
precompiled kernels use the default X86_64 Linux build,
x86_64_defconfig. In some scenarios the kernels might not
run on the host machine (e.g., the host machine is equipped
with hardware which require drivers beyond the Linux default
build). In these cases, you must compile the kernels locally
on the machine, using the host kernel local config. The ar-
tifact provides scripts to automatically compile SafeFetch
kernels on the host machine. For local compilation, the host
machine ideally runs gcc v8.4 (or newer) and binutils v2 . 30
(or newer). The process is explained in detail in the readme
files that come with the artifact.


https://github.com/vusec/safefetch-ae
https://github.com/vusec/safefetch-ae/releases/tag/v1.0

A.2.5 Benchmarks

None. All the benchmarks are automatically installed as part
of the artifact.

A.3 Set-up
A.3.1 Installation
You can download our stable release:

$ wget https://github.com/vusec/
safefetch-ae/archive/refs/tags/vl
.0.zip -0 safefetch-ae.zip

$ unzip -a safefetch-ae.zip

Or clone the artifact from the GitHub repository:

$ git clone
https://github.com/vusec/safefetch-ae.git

Once the artifact is saved on the host machine, enter the arti-
fact folder (i.e., safefetch-ae) and run the following com-
mand:

$ make setup

The command will install all dependencies required by our
workflow scripts on the host machine. Furthermore it will
install and configure our main performance benchmarks: LM-
Bench, OSBench and the Phoronix benchmarks discussed in
the paper. Lastly, it will download the publicly available POC
for CVE-2016-6516 used to evaluate SafeFetch’s security.

A.3.2 Basic Test

After setup finishes first check whether the POC and bench-
marks are installed correctly and you can generate the main
artifact results:

$ make verify_install && make all-
paper

The end result of the command will be a pdf document in
the ./playground/paper/ directory (which we will later
regenerate once more parts of the artifact are ran). Without
running the rest of the evaluation workflow the pdf will only
contain the main performance tables/graphs discussed in the
SafeFetch performance evaluation (obtained from the RAW
results that are included with the artifact) alongside boiler
plates for the results obtained when running the next parts of
the artifact workflow. The backbone of the artifact is loading
different kernels and running different performance/security
evaluation workflows. To finish the basic test, check for live-
ness on the kernel used to reproduce the security workflow.

$ make load_kernel SAVED_DIR=exploit-
default
$ sudo reboot

When loading the kernel you will be prompted to chose
which kernel to load by default after reboot. Pick the index of
the first kernel containing the string id "5.11.0-exploit+". In
case the default exploit kernel does not boot, follow the de-
tailed explanation provided in the artifact repository readme,
which explains how to compile this kernel on the host ma-
chine.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): SafeFetch’s caching mechanism structurally mit-
igates double-fetch bugs in the Linux Kernel. This is
proven by experiment (EI) which is described in Section
9.1 of the main paper. The experiment shows that even
though the publicly available POC (proof-of-concept)
to exploit a known double-fetch CVE can succesfully
execute on a baseline image which does not enforce
SarfeFetch’s mechanics, the bug cannot be repro-
duced on a kernel that enables SafeFetch.

(C2): SsafeFetch mitigates double fetch bugs with small
penalty to performance. This is proven by experiment
(E2) and described in our main performance evalua-
tion section (Section 9.2) which shows that the default
SafeFetch configuration scores low performance
overheads (relative to the baseline), tipically in a 5%
performance budget, across a series of microbenchmarks
(e.g., LMBench, OSBench) and real-world applications
(from the Phoronix suite).

(C3): SafeFetch’s lightweight caching mechanism
achieves comprehensive performance at a fraction
of the cost of existing solutions (e.g., Midas). This is
proven by experiment (E3) and highlighted by our
performance evaluation (Section 9.2) which shows that
the overhead of Midas is far larger than the penalty
incurred by SafeFetch on various benchmarks (e.g.,
35.9% geo mean for Midas vs 4.4% for SafeFetch
on LMBench).

A.4.2 Experiments

(E1): [Security artifact] [1 human-minutes + 40 compute-
minutes]: SafeFetch protects the kernel against
double-fetch bugs and in particular mitigates an exploit
for CVE-2016-651 6. For this experiment you will ex-
ecute the POC reproducing the exploit with and without
SafeFetch enabled.

How to: We provide a precompiled kernel image for
this experiment. After booting, the image will act as base-
line (the SafeFetch mechanism is disabled using static
keys, i.e., the SafeFetch hooks are nop instructions).
During runtime, the SafeFetch defense can be enabled
using a script provided with the artifact (by enabling the
static keys). If the bug reproduces during the execution of


https://github.com/vusec/safefetch-ae.git

the POC, a message containing the string "Bug-Warning"
is printed to dmesg output. The experiment runs the POC
for 5 iterations, each iteration attempting to reproduce
the bug 1 million times and collects the number of warn-
ings printed during each iteration. Our workflow script
will run the experiment first while the kernel runs as
baseline, after which it enables SafeFetch and runs the
experiment again. While the kernel runs as baseline it’s
expected that the bugs reproduces a dozen of times per it-
eration. When SafeFetch is enabled, no warning should
be printed to dmesg.

Preparation: From the artifact root dir run the follow-
ing command to load the kernel and reboot the machine:

$ make load_kernel SAVED_DIR
=exploit-default
$ sudo reboot

Execution: After booting into the new kernel, from the
artifact root run the following command:

$ make run_security_artifact

As a fail-safe, this command only runs within the exploit
kernel.

Results: After the experiment finishes, regenerate the
artifact pdf by running:

$ make all-paper

Section 2 of the pdf will now contain tables showing how
many times the bug was reproduced for each iteration,
on the two configurations.

(E2): [Performance artifact for SafeFetch | [1 human-

minutes + 7 compute-hours + 5GB disk]: SafeFetch
demonstrates effective double-fetch mitigation with low
overhead. For this experiment you will run the baseline
and SafeFetch default configuration (refered to as
SafeFetch-default inthe main paper) across mul-
tiple benchmarks: LMBench (latency and bandwidth),
OSBench and Phoronix.

How to: We provide a image for this experiment con-
figured with static keys to run first as a baseline (with
the defense hooks replaced with nop instructions) then
with the SafeFetch default configuration enabled.
Preparation: From the artifact root dir run the follow-
ing command to load the kernel and reboot the machine:

$ make load_kernel SAVED_DIR
=safefetch-default
$ sudo reboot

When prompted for which kernel to boot, provide the
index of the first image containing the string id "5.11.0-
safefetch+".

Execution: After booting into the new kernel, from the
artifact root run the following command:

$ make
run_performance_artifact

The script will first run all benchmarks on the baseline
then switch to the SafeFetch configuration and run the
same benchmarks again. RAW results are outputed in
the . /playground/performance directory.

Results: After the experiment finishes, regenerate the
artifact pdf by running:

$ make all-paper

The pdf now contains all results for
SafeFetch-default in Section 1, each in a dif-
ferent subsection (shown side-by-side with the results
from the main paper). Expect the following trends in the
obtained results:
e LMBench: geomean overheads around 4-5% for
both syscall and bandwidth tests.
e OSBench: geomean overhead between 0-3%.
e Phoronix: git, pybench, openssl oveheads between
0-1%.
e Phoronix: apache and nginx overheads around 2-
3%.
e Phoronix: around 7% overhead for the IPC bench-
mark.

(E3): [Performance comparisson with midas] [1 human-

minutes + 3.5 compute-hours + 5GB disk]:
SafeFetch demonstrates effective double-fetch
mitigation with lower overheads than the state-of-the-
art. For this experiment you will run Midas across
the same performance benchmarks and compare with
SafeFetch-default.

Preparation: From the artifact root dir run the follow-
ing command to load the kernel and reboot the machine:

$ make load_kernel SAVED_DIR
=midas-default
$ sudo reboot

When prompted for which kernel to boot, provide the
index of the first image containing the string id "5.11.0-
midas+".

Execution: After booting into the new kernel, from the
artifact root run the following command:

$ make
run_performance_artifact

Results: After the experiment finishes, regenerate the
artifact pdf by running:

$ make all-paper

The pdf will now contain the results for Midas in the
same performance tables/graphs as SafeFetch. Expect
the following trends in the obtained results:
o higher overheads for Midas for LMBench latency
results and OSBench (relative to SafeFetch).
e Phoronix: similar results as SafeFetch for git, py-
bench, openssl



e Phoronix: higher results for nginx and apache for
Midas (around 7% on nginx and as high as 14% for
apache).

Though not often, the Midas kernel can crash, disturbing
the flow of the artifact. As a fail-safe the paper genera-
tion process can generate partial results from unfinished
benchmarking runs.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.


https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


