ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

»

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX Security *24 Artifact Appendix: A Friend’s Eye is A Good
Mirror: Synthesizing MCU Peripheral Models from Peripheral Drivers

Chongqing Lei®, Zhen Ling’; Yue Zhang*, Yan Yang', Junzhou Luo’, Xinwen Fu®
T Southeast University, Email: {leicq, zhenling, yanyang, jluo} @seu.edu.cn
* Drexel University, Email: zyueinfosec @ gmail.com
§ University of Massachusetts Lowell, Email: xinwen_fu@uml.edu

A Artifact Appendix

A.1 Abstract

In this artifact, we provide the source code of PERRY , as
well as the required materials to replicate our experiments
described in the paper. This document describes how to re-
produce all results described in §5.2 and §6 of our paper.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Most of the experiments are conducted within a Docker con-
tainer and will not harm the computer. However, a reproducer
has to execute several commands on the host machine during
the experiment. Specifically, the producer has to enable or dis-
able Bluetooth device on the host machine in E4, and prepares
the machine for fuzzing on the host machine in ES. These
commands are widely used and will not harm the computer.

A.2.2 How to access

The code, as well as the experiment materials are avail-
able on GitHub: https://github.com/VoodooChild99/
perry/tree/sec24-ae-accepted.

A.2.3 Hardware dependencies

* Processor: We recommend using a machine with two
Intel Xeon E5-2620 v2 CPUs (12 cores, 24 threads) to re-
produce the experiment. However, comparable hardware
may also suffice.

* Memory: At least 64GB of RAM.
» Storage: At least 256GB.

* Bluetooth: The machine must be equipped with a Blue-
tooth device to replicate E4.

*Corresponding author: Prof. Zhen Ling of Southeast University, China.

A.2.4 Software dependencies

Ubuntu 20.04, git and Docker.

A.2.5 Benchmarks

We utilize P2IM unit tests for consistency experiments, and
P2IM real-world firmware samples for universality experi-
ments. Additionally, we collected various drivers and custom
firmware samples for the experiments described in §5.2 and
§6.2. These materials are all available and are referenced
in the “Building With Docker” section of the repository’s
README file.

A.3 Set-up
A.3.1 Installation

After cloning or downloading the repository, please refer to
the “Building With Docker” section of the READVME file to
build the Docker image. In case you cannot build the image,
we also provide a pre-built Docker image, please refer to the
“Using the Pre-Built Docker Image” section of the README
file for detailed instructions.

A.3.2 Basic Test

If the Docker image is built or downloaded successfully,
you can run ./run_docker. sh in the repository, which will
spawn a shell within the container on success. Note that the
container is still running after exiting from the shell, and you
can always spawn a new shell by running . /run_docker.sh
later.

A.4 Evaluation workflow
A4.1 Major Claims

(C1): PERRY is efficient in synthesizing hardware models
(§5.2 “Efficiency” and Figure 3).


https://github.com/VoodooChild99/perry/tree/sec24-ae-accepted
https://github.com/VoodooChild99/perry/tree/sec24-ae-accepted

(C2): PERRY can generate hardware models consistent with
actual hardware behaviors (§5.2 “Consistency” and Ta-
ble 3).

(C3): Hardware models generated by PERRY can be used to
emulate various firmware (§5.2 “Universality” and Table
5).

(C4): Hardware models generated by PERRY can be easily
fixed or extended to support missing hardware function-
alities (§5.2 “Scalability” and Tables 3, 5).

(CS): PERRY can be used to find specification violation bugs
(§6.1).

(C6): PERRY can be used to reproduce firmware vulnerabil-
ities (§6.2 “CS-I1I”).

(C7): PERRY can be used to fuzz RTOS (§6.2 “CS-I1II").

A.4.2 Experiments

Please refer to the “Replicating Our Experiments” section of
the README file in the repository for detailed steps to repro-
duce our experiments.

We design five experiments (E1-E5) to con-
firm C1-C4 and C6-C7. We provide details about
the specification violation bugs we found under
perry-experiments/spec-violation-bugs.md to
confirm CS.

(E1): [Efficiency] [5 human-minutes + 100 compute-hours]:
PERRY ’s model synthesis efficiency is evaluated
by the consumed time. You may find the results in
perry-experiments/0l-efficiency/result.csv.
C1 is confirmed if the acquired results are comparable
with Figure 3.

(E2): [Consistency] [10 human-minutes + 30 compute-
minutes]: PERRY ’s consistency is evaluated by the pass-
ing rate on P2IM unit tests. PERRY should be able to
pass 49 unit tests initially, and all unit tests after fixing
models, which is consistent with Table 3 and confirms
C2. We prepend the comment // PERRY PATCH before
every fix to help identify them, you can crosscheck these
fixes with Table 3 to confirm C4.

(E3): [Universality] [20 human-minutes + 20 compute-
minutes]: PERRY ’s universality is evaluated by execut-
ing various firmware samples. PERRY should be able to
execute all of them without crashes and hangs as shown
in Table 5, which confirms C3. We prepend the comment
// PERRY PATCH before every fix to help identify them,
you can crosscheck these fixes with Table 5 to confirm
C4.

(E4): [CVE Reproducing] [l human-hour + 1 compute-
hours]: We use the STM32F407 hardware model gener-
ated by PERRY to emulate Zephyr, and reproduce two
CVEs. C6 can be confirmed if the two CVEs can be
successfully reproduced.

(ES): [LiteOS Fuzzing] [5 human-minutes + 66 compute-
hours]: The script will try to utilize all CPU cores

and fuzz each target for 6 hours. If your machine has
more than 11 cores, the experiment only takes around 6
compute-hours. C7 is confirmed if the results are com-
parable with Table 6.

A.5 Notes on Reusability

PERRY is designed to generate MCU hardware models from
driver code. To support a new MCU, a user needs to compile
the driver code with the provided Clang plugin and compiler
wrapper, and write a configuration file for the MCU. We have
included such information in the “Supporting New MCUs”
section of the README file in the repository.

A.6 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.


https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


