ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX Security *24 Artifact Appendix: <Notus: Dynamic Proofs of
Liabilities from Zero-knowledge RSA Accumulators>

Jiajun Xin Arman Haghighi

Xiangan Tian

Dimitrios Papadopoulos

The Hong Kong University of Science and Technology

A Artifact Appendix

A.1 Abstract

In this artifact evaluation, we evaluate the implementation of
the Notus prototype and its underlying RSA accumulators,
SNARK circuits, smart contracts to verify the proofs and
low-level optimizations for fast multi-exponentiations. Most
parts of our experiment are developed using Golang, and the
smart contract is based on Solidity. The evaluation results are
expected to show the practicability of the Notus system and
our optimizations for both Notus and multi-exponentiations.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

These experiments do not contain any destructive steps nor
harm the server running the code. We want to stress that
the RSA accumulator parameters we use are generated by
ourselves and shall not be used in the production environment.

A.2.2 How to access

The main part of the experiment is in this project
(https://github.com/notus-project/rsa_
accumulator/tree/v0.1.0), including the prototype
of Notus, and its implementation using zero-knowledge RSA
accumulators, specific SNARK design, the code for proving
and verification, and the smart contract to verify the proofs.

A.2.3 Hardware dependencies

Our main program can be run on any server with commodity
hardware and 20GB disk free space for the very basic proce-
dure. Because our code is highly optimized for parallelization
and uses a precomputation table to optimize performance fur-
ther, to verify all the claims of our results, we require 40 GB
disk free space, 32 threads, and 128GB memory.

A.2.4 Software dependencies

The main part of the experiment is based on Golang 1.19 or
above. It can be run either on Windows, Linux or MacOS
as long as it supports Golang. To verify the gas cost of our
Ethereum smart contract, we provide the code based on
Foundry, which requires Linux or MacOS (also possible
on Windows but requires additional setup processes). We
also claim the same gas estimation result can be achieved
using any smart contract test bed, for example, the web-
based testbed Remix (https://remix.ethereum.org/).
For the simplicity of the evaluator, a sample data that
passes the smart contract verification is provided in
https://github.com/notus-project/solidity_
contract/blob/v0.1.0/test/Verifier.t.sol.

A.2.5 Benchmarks

There are many ways to test the gas cost of a smart
contract, and the results might jitter slightly due to the
state of the blockchain, the level of optimization, and
different versions of the platform. For simplicity of
verifying the gas cost of this project’s smart contract
(https://github.com/notus-project/solidity_
contract/blob/v0.1.0/src/Verifier.sol), we provide
the code to verify the gas cost of our smart contract
in https://github.com/notus-project/solidity_
contract/tree/v0.1.0.

A.3 Set-up

To run the main part of the experiment, Golang with version
1.19 or above is required. Detailed instructions can be found
from https://go.dev/dl/.

To use Foundry to estimate the gas cost of our smart con-
tract, Foundry is required. Detailed instructions can be found
from https://book.getfoundry.sh/getting-started/
installation.

A.3.1 Installation

To run the main experiment, clone the GitHub project, use
#go mod tidy to install the necessary Golang packages, and


https://github.com/notus-project/rsa_accumulator/tree/v0.1.0
https://github.com/notus-project/rsa_accumulator/tree/v0.1.0
https://remix.ethereum.org/
https://github.com/notus-project/solidity_contract/blob/v0.1.0/test/Verifier.t.sol
https://github.com/notus-project/solidity_contract/blob/v0.1.0/test/Verifier.t.sol
https://github.com/notus-project/solidity_contract/blob/v0.1.0/src/Verifier.sol
https://github.com/notus-project/solidity_contract/blob/v0.1.0/src/Verifier.sol
https://github.com/notus-project/solidity_contract/tree/v0.1.0
https://github.com/notus-project/solidity_contract/tree/v0.1.0
https://go.dev/dl/
https://book.getfoundry.sh/getting-started/installation
https://book.getfoundry.sh/getting-started/installation

use #go build to build executable files.
To run the gas estimation of our smart contract, clone the
GitHub project and checkout to the correct branch.

A.3.2 Basic Test

To run the main experiment, in folder “rsa_accumulator”, run
the compiled file “rsa_accumulator” and input “1” to run a
basic test.

Because our multi-exponentiation optimizations can also
be used for generous purposes, we listed and benchmarked it
independently in https://github.com/notus-project/
multiexp/tree/v0.1.0. To run the benchmark of the multi-
exponentiation optimizations, input #go test -bench . to run all
the benchmarks in the folder directly using Golang’s official
benchmark framework.

To run the gas estimation of our smart contract, in folder
“solidity_contract”, run the following to get the result: #forge
test

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): The multi-exponent optimizations achieve better effi-
ciency than the basic exponentiation algorithm based
on Montgomery modular multiplications. The expected
results are depicted in Section 6, Table 2.

(C2): RSA accumulator performance. This benchmark tests
the performance of RSA accumulators both in a single
thread and multiple threads and the time to retrieve a
precomputed membership proof. The expected results
are depicted in Section 6, Figure 8.

(C3): Notus system performance. This benchmark tests the
performance of the Notus system, including a component
profiler in a single thread, the number of constraints of
its SNARK circuit as well as proving time under different
numbers of users. As a comparison, a simple SNARKed-
Merkle tree is also benchmarked. The expected results
are depicted in Section 6, Figure 8, Figure 9, and Table
3.

(C4): Gas cost of our smart contract. This benchmark tests
the gas cost of verifying the smart contract, which verifies
Grothl6 proof and PoKE proof for RSA accumulators,
respectively. The expected results are depicted in Section
6: the Gas cost per audit proof is only 750K (270K for
verifying a Grothl6 proof and 480K for verifying two
PoKEs).

A.4.2 Experiments

(E1): [The multi-exponent optimizations benchmarks] [1
human-minutes + 5 compute-minute]: requires at least
2 threads to see the benefit of parallelization. The exper-
iments test from I thread to 16 threads.

Preparation: N/A

Execution: In the folder of multiexp, execute #go test
-bench .

Results: We observe that with our optimizations Dou-
bleExponent is around 30% faster and FourfoldExpo-
nent around 60% faster than their original counterparts.
Additionally, we report the performance of FourfoldEx-
ponent when combined with a precomputation table that
includes a precomputation of every single bit; we refer
to this as the precomputeFourfoldExponent function.

(E2): [RSA accumulator benchmarks.] [1 human-minutes
+ 2.5 compute-hour]: requires 32 threads to see the
benefit of parallelization and 120GB memory to load the
precomputation tables.

Preparation: N/A

Execution: In the folder of rsa_accumulator, execute
#./rsa_accumulator and execute condition 2 and 4.
Results: These two experiments illustrate the perfor-
mance of our RSA accumulators.

(E3): [Notus benchmarks.] [1 human-minutes + 6 compute-
hour]: requires a single thread for “Single Core Compo-
nent Profiler” and 32 threads to benchmark the perfor-
mance of the Notus system with parallelization, 120GB
memory to load the precomputation tables, and 40 GB
disk space to store the SNARK circuit.

Preparation: N/A

Execution: In the folder of rsa_accumulator, execute
#./rsa_accumulator and execute condition 3 (Single Core
Component Profiler) and 5 (Notus under different group
size in parallel).

Results: Condition 3 illustrates the percentage of run-
ning time for membership precomputation in Notus sys-
tem with a single thread, and condition 5 shows the
benchmark of the Notus system

(E4): [Smart contract benchmarks.] [5 human-minutes + 1
compute-minute]: requires single thread.

Preparation: N/A

Execution: In the folder of solidity_contract, execute
#forge test.

Results: It outputs the estimated gas cost of the smart
contract.

A.5 Notes on Reusability

As we mentioned previously, our multi-exponent optimiza-
tions are designed for general-purpose computations. Its code
can be further extended for more threads and “denser” pre-
computation tables.

The (zero-knowledge) RSA accumulator, together with
its highly parallelized membership-proof precomputation
scheme, can be used independently as an efficient implemen-
tation of RSA accumulators. Besides, the smart contract to
verify the Groth16 proofs is generated automatically using the
gnark library, which means we can generate smart contracts


https://github.com/notus-project/multiexp/tree/v0.1.0
https://github.com/notus-project/multiexp/tree/v0.1.0

for other circuits beyond Notus easily.

A.6 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.


https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


