
USENIX Security ’24 Artifact Appendix: Intellectual Property Exposure:
Subverting and Securing Intellectual Property Encapsulation in Texas

Instruments Microcontrollers

Marton Bognar, Cas Magnus, Frank Piessens, Jo Van Bulck

DistriNet, KU Leuven, 3001 Leuven, Belgium

A Artifact Appendix

A.1 Abstract
This artifact provides source code for the individual attack
primitives and end-to-end attack scenarios that can be run on
off-the-shelf TI MSP430 microcontrollers with Intellectual
Property Encapsulation (IPE) support. We also provide source
code to reproduce evaluation results for the software mitiga-
tion framework, as well as the openMSP430/Sancus-based
hardware mitigation against controlled call corruption.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

This artifact demonstrates attacks on real-world TI MSP430
microcontrollers. There are no security risks for evaluators,
as the only code executed on the host machine is compilation
of the example projects using standard tools. All attack code
runs locally on the specific device under test.

The attack code provided in this artifact is solely intended
for reproduction of our results. Any uses of these results on
real-world microcontrollers should be conducted responsibly.

A.2.2 How to access

The artifact files are accessible in the following repository:
https://github.com/martonbognar/ipe-exposure/
tree/usenix24-artifact.

A.2.3 Hardware dependencies

Our repository contains proof-of-concept code for four
TI development boards: MSP-EXP430FR5994, MSP-
EXP430FR5969, EVM430-FR6047, MSP-EXP430FR6989.

A.2.4 Software dependencies

Compiling and running our artifact requires the following
software, available on all major operating systems:

• Code Composer Studio (CCS) integrated development
environment (IDE). Can be downloaded from the TI
website (we used regular CCSTUDIO version 12.6.0):
https://www.ti.com/tool/CCSTUDIO#downloads.

• Python 3 with pycparser (v2.21), pycparserext
(v2021.1), and pyelftools (v0.29) libraries.

• For the Sancus experiment: gcc-msp430, cmake,
iverilog (e.g., via standard Ubuntu packages).

A.2.5 Benchmarks

No external benchmarks were used for our evaluation.

A.3 Set-up
A.3.1 Installation

First, clone the artifact repository:
$ git clone --recurse -submodules \

--branch usenix24-artifact \
https://github.com/martonbognar/ipe-exposure

Then, install the software dependencies from above.

1. Download CCS via the link above and proceed with the
installation, then install the necessary drivers:
$ wget https://dr-download.ti.com/software -

↪→ development/ide-configuration -compiler -
↪→ or-debugger/MD-J1VdearkvK /12.6.0/ CCS12
↪→ .6.0.00008_linux -x64.tar.gz

$ tar -xvzf CCS12 .6.0.00008_linux -x64.tar.gz
$ cd CCS12 .6.0.00008_linux -x64/
$./ccs_setup_12 .6.0.00008.run # choose ~/ti

↪→ as installation directory
$ cd ~/ti/ccs1260/ccs/install_scripts/
$ sudo ./install_drivers.sh

2. Install the required Python 3 dependencies:
$ cd ipe-exposure/05_framework/framework
$ pip install -r requirements.txt --no-deps

3. Install Sancus dependencies:
$ sudo apt install gcc-msp430 cmake iverilog

https://github.com/martonbognar/ipe-exposure/tree/usenix24-artifact
https://github.com/martonbognar/ipe-exposure/tree/usenix24-artifact
https://www.ti.com/tool/CCSTUDIO#downloads
https://pypi.org/project/pycparser/
https://pypi.org/project/pycparserext/
https://github.com/eliben/pyelftools

A.3.2 Basic Test

To test out the setup, we provide a simple “hello world” CCS
project that can be run on the target MSP430 board with IPE as
per the steps below (please refer to the repository’s top-level
README.md for detailed screenshots and troubleshooting):

1. Launch the CCS IDE and create a new workspace in an
empty directory when prompted on startup.

2. In CCS, choose File ▷ Open Projects from File System.
Now select the directory 00_helloworld in the cloned
ipe-exposure repository.

3. With the microcontroller connected to the system, start
the debug session (F11,).

4. After successfully launching the debug session, resume
the program (F8,).

5. Expected output should now appear in the Console pane:

Reading secret from main: 1234 (IPE disabled)
Reading secret from IPE : 1234

6. In order to activate IPE, the device needs a hard reset.
For this, first pause the running debug session (Alt+F8,

), then select “Hard Reset” from the dropdown next
to the Reset button ():

7. The microcontroller will now reboot with IPE enabled.
After resuming the program (F8,), you should see
the following output in the Console pane:

Reading secret from main: 3fff (IPE enabled)
Reading secret from IPE : 1234

8. The CCS debug session can now be terminated via the
stop button (Ctrl+F2,).

A.4 Evaluation workflow

A.4.1 Major Claims

C1 The attack primitives from §3 directly or indirectly break
confidentiality and integrity of IPE-protected memory,
as summarized in Table 1 (cf. E1).

C2 The covert channels from §3.4 enable deterministic leak-
age with performance as reported in Table 4 (cf. E2).

C3 The three end-to-end attack scenarios from §4 can be
reproduced, showing successful corruption or leakage of
secrets from complete programs (cf. E3).

C4 Buffering the program counter register as a hardware mit-
igation prevents similar attacks on openMSP430/Sancus,
as explained in §3.1 (cf. E4).

C5 Our software mitigation framework blocks all architec-
tural attacks demonstrated in this paper (cf. E5).

C6 The micro- and macrobenchmarks in §6.4 (Tables 5 and
7) describe the software framework’s overhead (cf. E6).

A.4.2 Experiments

E1: [Attack primitives] [40 human-minutes]: Reproduction
of three architectural and three side-channel attack prim-
itives by running minimal proof-of-concept programs,
one per primitive, in standalone CCS projects.
Preparation: Launch CCS and open all relevant
projects under the 01_attack_primitives directory.
Execution: For every project individually, analogous to
§A.3.2: launch the debug session, trigger a hard reset (to
activate IPE), then run the code.
Results: Refer to the README of each project for the
expected output, which should match the console. These
projects demonstrate the effectiveness of the attack prim-
itives and, thus, validate claim C1.

E2: [Covert channels] [20 human-minutes]: Reproduction
of the three covert channel setups.
Preparation: Launch CCS and open all projects under
the 02_covert_channel directory.
Execution: For every project individually, analogous to
§A.3.2: launch the debug session, trigger a hard reset (to
activate IPE), then run the code.
Results: Refer to the README of each project for the
expected output, which should match the console and
the numbers in the second column of Table 4. These
projects demonstrate the presence of the covert channels
and their measured performance, validating claim C2.

E3: [End-to-end attacks] [20 human-minutes]: Reproduction
of end-to-end attacks.
Preparation: Launch CCS and open all relevant
projects under the 03_end_to_end_attacks directory.
Execution: For every project individually, analogous
to §A.3.2: launch the debug session, trigger a hard re-
set (to activate IPE), then run the code. Note: for the
init_struct_overwrite exploit, two successive hard
resets are required (see the corresponding README).
Results: Refer to the README of each project for the
expected output, which should match the console. These
projects demonstrate the effectiveness of the attacks and,
thus, validate claim C3.

E4: [Sancus defense] [10 human-minutes]: Reproduction of
the existing hardware mitigation preventing controlled
call corruption on Sancus. The cycle-accurate open-
MSP430 Verilog simulation shows that the attack fails
on the original Sancus, but succeeds after deliberately
omitting the program counter buffering.
Preparation: Make sure the sancus-core git submod-
ule is initialized (execute git submodule init; git
submodule update if needed).
Execution: Run the run-sancus-eval.sh script in
the 04_sancus_exploit/sancus-exploit/ directory.
This will perform all necessary steps for this experiment.
Results: The script will first run a controlled call cor-
ruption attack against the upstream version of Sancus.

libipe

translator.pyin.c

generated.S

out.c1

ipe_support.h fake_libc
_include

2

linker.py

6
CCS IDE

ld430

fr5969.cmd

7

5
ipe_support.c stubs.S eabi.S

43

Figure 1: Overview of the general workflow for the software mitigation framework.

This attack should result in a memory violation error,
without overwriting the secret value. Next, the script will
apply a minimal patch that removes the buffered pro-
gram counter. After running the same attack again, no
memory violation will occur, and the secret value will
be overwritten, validating claim C4.

E5: [Framework security] [40 human-minutes]: Demonstra-
tion of the mitigation framework’s security by recompil-
ing and running a vulnerable example project.
Preparation: Launch CCS and open the demo_all
project under the 05_framework/security_eval/ di-
rectory. Now execute run.sh in that same directory to
apply the framework (cf. Figure 1) on the vulnerable
application and generate a new demo_all_mitigated
project. Open this new project in CCS as well.
Execution: Run both the vulnerable and the mitigated
projects and examine the fail_code and public vari-
ables using the CCS debugger, as shown in the screen-
shots of the README file. Repeat this three times, for
all values of the attack global variable in main.c.
Results: The values will show that while in the unpro-
tected version all attacks successfully change and leak
values from the IPE region, applying our framework
disables these attacks, validating claim C5.

E6: [Benchmarks] [40 human-minutes]: Reproduction of the
micro- and macrobenchmarks by measuring the timing
of projects secured by the framework.
Preparation: Follow the steps in the README in the
06_benchmarks directory to simultaneously debug a
timer and a benchmark project on two connected boards.
Execution: Always start a new debug session of the
timer project and resume its execution first before
launching and resuming the benchmarked program in
a separate CCS instance. After successfully collect-
ing 100 measurements, the timer project prints the
collected numbers in a comma-separated value format
to the console, which can be copied verbatim into a
.csv file. Collect microbenchmark measurements for
a software-bor/bor_timing_*/ project, depending
on the evaluation target. Next, collect macrobenchmark

measurements for both the hmac/base_attestation
and hmac/translated_attestation projects.
Results: Use the measurements/calculator.py
script to compute the mean and standard deviation for
the collected .csv files. These values should be similar
to those reported in the paper (small deviations are
expected), showing the limited overhead of our defense
and validating claim C6.

A.5 Notes on Reusability
Based on the 05_framework/security-eval and
06_benchmarks/hmac examples, our software mitiga-
tion framework (cf. Figure 1) could be applied to other
programs, collecting additional evidence for its overhead and
effectiveness. In future work, the framework could also be
improved further to support a wider range of programs.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

