ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED
susenix

»

AVAILABLE

USENIX Security 24 Artifact Appendix: ZKSMT: A VM for Proving
SMT Theorems in Zero Knowledge

REPRODUCED

Daniel Luick
Yale University

John C. Kolesar
Yale University

William R. Harris
Galois, Inc.

Timos Antonopoulos
Yale University
daniel.luick@yale.edu john.kolesar@yale.edu

timos.antonopoulos@yale.edu bll.hrris@gmail.com

Eran Tromer
Boston University

Ruzica Piskac
Yale University

James Parker
Galois, Inc.

Xiao Wang
Northwestern University
james@galois.com tromer@bu.edu

ruzica.piskac@yale.edu wangxiao@northwestern.edu

Ning Luo
Northwestern University

ning.luo@northwestern.edu

A Artifact Appendix

A.1 Abstract

This artifact contains an implementation of ZKSMT, a zero-
knowledge protocol for validating proofs of SMT theorems.
It also contains benchmarks and scripts for reproducing our
experimental results. ZKSMT is implemented primarily in
C++, but our artifact also includes scripts written in OCaml
and Python 3.

In addition to the main zero knowledge checker,
we also provide a compiler for converting proofs from
SMTInterpol into our format. We do not include SMT-
Interpol itself in our artifact, but it is publicly avail-
able at https://ultimate.informatik.uni-freiburg.
de/smtinterpol/online/proof.html.

The artifact also includes a plaintext version of ZKSMT
that validates proofs in the same format but does not perform
any cryptographic operations. In the evaluation for the paper,
we used the plaintext version of ZKSMT only within Cheese-
cloth. The main test scripts that we provide in the artifact do
not use the plaintext version of ZKSMT.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

All of the benchmarks in our evaluation are public and open-
source. The proofs that we use for the benchmarks come from
SMTInterpol, which is also open-source.

A.2.2 How to access

Our source code is publicly available as a GitHub repository
at the commit https://github.com/PP-FM/ZKSMT-pub/

tree/Usenix2024.

A.2.3 Hardware dependencies

For the evaluation results reported in the paper, we ran
ZKSMT on AWS instances of type r5b.4xlarge with 128
GB of memory, 16 vCPUs, and a 10 Gbps network connection
between the prover and verifier. However, the underlying ZK
protocols that we use only consume about 100 Mbps band-
width. We also configured ZKSMT to use 8 threads. Our
artifact does not need to be run on an AWS instance, but it
does require a very large amount of RAM.

For our reported running times, we ran the prover and ver-
ifier on distinct machines, but it is also possible to run both
ends on a single machine. It would need to be a machine with
at least 256 GB of memory, such as an AWS instance of type
r5b.8xlarge, to run the full benchmark suite on its own, but
128 GB is sufficient for all benchmarks except the final one.
In testing, we did not notice any significant difference in per-
formance, either positively or negatively, between running on
one machine or two. We recommend reproducing our results
on one machine if possible, as this eliminates the difficulties
of establishing a connection between two machines.

Because the WiSA benchmarks are much more time-
consuming than everything else in our evaluation, we also
provide a script Limited.py that runs everything except the
WiSA benchmarks. The script requires only 4 GB of memory
if run on a single machine.

A.2.4 Software dependencies

ZKSMT was developed on Ubuntu 22.04, though later ver-
sions of Ubuntu will likely work as well. We use Docker to
provide a reproducible build environment.


daniel.luick@yale.edu
john.kolesar@yale.edu
timos.antonopoulos@yale.edu
bll.hrris@gmail.com 
james@galois.com
ruzica.piskac@yale.edu
tromer@bu.edu
wangxiao@northwestern.edu
ning.luo@northwestern.edu
https://ultimate.informatik.uni-freiburg.de/smtinterpol/online/proof.html
https://ultimate.informatik.uni-freiburg.de/smtinterpol/online/proof.html
https://github.com/PP-FM/ZKSMT-pub/tree/Usenix2024
https://github.com/PP-FM/ZKSMT-pub/tree/Usenix2024

The zero knowledge checker itself depends on EMP-zk,
a library for efficient and interactive zero-knowledge proofs.
EMP-zk in turn depends on libntl, a high-performance number
theory library. Other dependencies include Python 3, g++,
CMake, and matplotlib for creating plots. See the provided
Dockerfile for all dependencies.

The process of generating the proofs that ZKSMT validates
is not part of our main research contributions, but we include
the code for proof generation in our artifact. Our proofs are
generated using SMTInterpol and compiled using a compiler
provided in the ZKSMT repository. The compiler depends on
OCaml, its Dune build system, and several packages installed
through the opam package manager.

More detailed installation instructions are in Section A.3.

A.2.5 Benchmarks

Our main benchmarks come from the tests for the Boogie ver-
ification language. We stress test ZKSMT with benchmarks
derived from WiSA, the Wisconsin Safety Analyzer, as pro-
vided in the SMT-LIB benchmark suite. We also run tests on
each individual rule that is part of ZKSMT’s rule set, using
stub proof files generated by our compiler.

For our baseline comparison, we ran a subset of the Boogie
benchmarks on a plaintext version of our checker, located in
the checkers directory in our repository, with the Cheese-
cloth tool. We do not include the code for reproducing this
part of our results in the artifact. The results from running
Cheesecloth are stored in zkchecker/cycle_count.txt in
our repository.

A.3 Set-up
A.3.1 Installation

We have two scripts for the initial setup. The script
install docker. sh installs Docker. After Docker has been
installed, the script setup_container. sh can be run to cre-
ate a Docker image with all of the required dependencies
based on a provided Dockerfile. See steps 1 and 2 in the
README.

A.3.2 Basic Test

For a basic test, we provide the script simple.py, described
in step 3 of the README. The script runs only a single
Boogie benchmark. If the script succeeds, it should output
timing information for various sections of the algorithm and
for specific rules, and it should print check complete at the
end.

Just like the other test scripts, simple.py can be run on
either one machine or two. For the multi-machine approach,
the script can be used to ensure that the two machines can
communicate successfully.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): ZKSMT can validate SMT proofs involving Boolean
logic, equality with uninterpreted functions (EUF), and
linear integer arithmetic (LIA) efficiently in zero knowl-
edge (§7.1, Figure 2).

(C2): The running times of our individual proof rules scale
linearly relative to the maximum list length in a proof.
Other size parameters, such as the number of expres-
sions in the expression table, are irrelevant in comparison
(§7.2, Figure 5).

(C3): Our compiler does not enlarge proofs excessively when
it translates them into our ZK format (§7.2, Figure 4).
At most, the number of proof steps in the ZK version of
a proof is 7 times larger than the number of proof steps
in the original proof from SMTInterpol.

(C4): ZKSMT can validate extra-large SMT proofs (§7.2,
Figure 6a).

(CS): ZKSMT is significantly faster than Cheesecloth, a
general-purpose tool for executing C-like programs in
zero knowledge (§7.3, Figure 6¢). Though the exact run-
time ratio may differ due to variations in startup time,
ZKSMT is consistently faster by multiple orders of mag-
nitude.

A.4.2 Experiments

(E1): Full results (7 compute-hours, 256 GB RAM or 128
GB RAM each on two machines):
After setting up a Docker container as described in Sec-
tion A.3, see full.py in step 3 of the README. This
reproduces all major claims. After running and extracting
output from the Docker container, the figures mentioned
in A.4.1 will be available in a new directory named out
in the repository.

(E2): Limited results (1.3 compute-hours, about 4 GB
RAM):
Same as E1, but run the 1imited.py script instead. This
reproduces all major claims except C4.

A.5 Notes on Reusability

Though the most important feature of our artifact is the zero
knowledge checker itself, our repository contains other pro-
grams. One of them is a compiler for generating ZKSMT
proofs from the RESOLUTE format generated by SMTInter-
pol, with a few tweaks. The compiler allows ZKSMT to be
run on proofs not included in the repository. Note that the
compiler only supports the theories that the implementation
of our ZK checker supports: for instance, it cannot translate
proofs about quantifiers or non-linear arithmetic.
Additionally, there is a plaintext version of the zero knowl-
edge checker, and the zero knowledge checker can be run in-


https://github.com/emp-toolkit/emp-zk/tree/master
https://libntl.org/
https://github.com/boogie-org/boogie
https://research.cs.wisc.edu/wisa/
http://smtlib.cs.uiowa.edu/benchmarks.shtml

dependently of the benchmarking scripts. See the READMEs
in their respective directories for more information.

Though the memory requirements for the WiSA bench-
marks are quite high, the script 1imited.py, which runs ev-
erything except the WiSA benchmarks, works on machines
with at least 4 GB of memory. Furthermore, most WiSA
benchmarks other than the final largest benchmark require
significantly less than 256 GB of memory. If running the full
benchmark suite is prohibitively costly, the test scripts can
be modified to skip some of the benchmarks. The names
of specific WiSA benchmarks can be added to the vari-
able wisa_skip_list in zkchecker/benchmark.py, and
full.py will skip them when run afterward; the plotting
in zkchecker/plot.py is designed to work even if certain
WiSA benchmarks are missing.

A.6 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.


https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


