
USENIX Security ’24 Artifact Appendix: SoK: All You Need to Know
About On-Device ML Model Extraction - The Gap Between Research and

Practice

Tushar Nayan*

Florida Intl. University
Qiming Guo*

Florida Intl. University
Mohammed Al Duniawi
Florida Intl. University

Marcus Botacin
Texas A&M University

Selcuk Uluagac
Florida Intl. University

Ruimin Sun
Florida Intl. University

A Artifact Appendix

A.1 Abstract

The appendix will introduce the roadmap for evaluating the
artifact and reproducing the major results discussed in the
paper "SoK: All You Need to Know About On-Device ML
Model Extraction - The Gap Between Research and Practice."
Specifically, this appendix will explain how to use the source
code available.

To facilitate the result, we evaluated the representative
projects in laboratory settings and then further on large-scale
ML applications. Our artifact comprises open-source projects,
models, and evaluation strategies. It further includes script
files with instructions for creating the environment for each
open-source project, preparing the dataset, executing, and ob-
serving results claimed in our SoK paper.

A.2 Description & Requirements

This section includes the necessary information for recreating
the experimental setups used in the paper, including how to
access the source code, hardware and software requirements,
and how to prepare the required datasets and model files for
the evaluation. In most cases, it is recommended to run all
experiments inside the virtual environment. Ideally, this envi-
ronment should be set up on a Linux machine (e.g., Ubuntu)
with GPU capabilities and administrative access.

A.2.1 Security, privacy, and ethical concerns

As far as we know, the artifact does not raise any security,
privacy, or ethical concerns.

*The first two authors contributed equally to this work.

A.2.2 How to access

The artifact is available on GitHub1. Please start by cloning
or downloading the repository on a commodity computer
running on Linux. We have provided some sample model
files in this repository that can be used for evaluation. If you
require more real-world Machine Learning (ML) models, we
can provide them upon request.

A.2.3 Hardware dependencies

We recommend evaluating our findings with a machine run-
ning Linux OS, equipped with at least 8GB RAM and a GPU
that supports CUDA. We used a machine running Ubuntu
20.04.6 with Intel® Core™ i7-8700 and NVIDIA A100 GPU
(CUDA 10.2) to get all the claims discussed in the paper. We
further recommend that users must have administrative access,
as for some projects, you may require sudo access to install
and run the experiment.

A.2.4 Software dependencies

We recommend creating virtual environments for each open-
source project using Anaconda. You should first check the
README.md and evaluate.md file provided in the root direc-
tory to reproduce each project, we further recommend you to
have a look at README files provided in the project’s directory,
where you may be asked to install some standard libraries such
as PyTorch, NumPy, TensorFlow, etc. For most of the projects,
you will find the requirement.txt or environment.yml
files to quickly create the environments. Later, to evaluate the
power consumption of each experiment you need to install In-
tel Performance Counter Monitor (PCM). The documentation
for this tool is provided in the Evaluation folder.

1https://github.com/sys-ris3/ML_Extraction_Sok/tree/
0d19edab5b5bd4bad4562543f4c1457be3c30852

https://github.com/sys-ris3/ML_Extraction_Sok/tree/0d19edab5b5bd4bad4562543f4c1457be3c30852
https://github.com/sys-ris3/ML_Extraction_Sok/tree/0d19edab5b5bd4bad4562543f4c1457be3c30852


A.2.5 Benchmarks

The experiments in our paper need ML models from different
frameworks. Due to the large size of the models and potential
intellectual property concerns, we can only provide access to
these models upon request. Nonetheless, some projects use
off-the-shelf datasets and models that can be automatically
loaded by their script files. Detailed information is provided
in each project’s README file.

A.3 Set-up
This section will introduce how to set up the environment for
running experiments quickly.

A.3.1 Installation

After cloning or downloading the repository, we need to have
installed Python, Anaconda, and PCM as preliminaries for our
evaluation. Then for each project, we need to create a separate
virtual environment using Anaconda (conda) and install other
necessary requirements. The steps are the following.

1. install PCM by following the steps in
Evaluation/README.md.

2. install python with this command sudo apt install
python and for conda check the documentation at-
tached here.

3. for each project in folders ModayXray,
DeepSniffer, ML-Doctor, Prediction-Poison,
Adaptive_misinformation, repeat steps (4-7).

4. create a virtual environment with a short project
name conda create -name project_name
python=v.0.0, check the project’s README file
for the python version required.

5. activate the virtual environment and enter the project
folder.

6. install requirements through pip install -r
requirements.txt if file requirements.txt exists,
or conda env update -n project_name -file
environment.yml. if environment.yml exists.
If you want to create virtual environments for all rep-
resentative projects simply run the env-setup.sh file
provided in the root directory to create the virtual envi-
ronments followed by step 7.

7. follow the README steps for other installation require-
ments.

A.3.2 Basic Test

Use the following commands in the shell to check if Conda
and Python is properly installed.

• conda --version
• python --version
If no error is reported in the final output, then all the depen-

dencies are installed properly.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): The open-source projects that we selected for evalua-
tion can work on sample models provided by authors.

(C2): The evaluated projects may not work on real-world
ML models.

(C3): The power consumption of the evaluated projects is
consistent with those reported in Section 4.4.2 of our
paper.

A.4.2 Experiments

To conduct the model extraction attacks on a large scale
with different model files, we recommend you refer to the
README files provided in the project directory of - (project
names)
(E1): EVALUATION - POWER CONSUMPTION [5 human-

minutes + 5 compute-minutes]: Intel Performance
Counter Monitor is used to estimate the power consump-
tion before and after the attacks.
How to: Run the PCM tool in parallel to your model
extraction attacks/defense projects to observe the power
consumption in real time. You can find the documenta-
tion in the Evaluation folder.
Preparation: Steps 1 and 2 of the README file pro-
vided in the Evaluation folder will help set up the PCM
tool and configure the specific environment variables re-
quired for execution.
Execution: Step 3 bin/pcm will run the PCM tool and
display the PPO energy in real-time.
Results: The power consumption is the difference of the
PPO energy before and after executing the attack/defense
projects.

(E2): [Open-Source Projects] [3 human-hour + 5 compute-
hour]: We have added all the open-source projects
with the folder names ModelXRay, ML-DOCTOR
DeepSniffer, Adaptive Misinformation,
Prediction-Poisoning to our repository for
large-scale evaluation on ML model extraction
attacks/defenses.
How to: We highly recommend following the
README file within each project directory for
instructions on setting up the environment.
Preparation: We recommend to start testing with our
model files provided in the folder Models. However, for
some projects, e.g., DeepSniffer, model checkpoints
are available here. Similarly, for ML-DOCTOR, one can
use the model files in the Models folder. For Adaptive
Misinformation and Prediction-Poisoning, the
files are generated at execution. Later, one can replace
the files with other model files. Last, please refer to the
README file of each project for any additional prepa-
ration.

https://medium.com/@anarmammadli/how-to-install-conda-on-ubuntu-b6e67f15a4dd
https://drive.google.com/drive/folders/1JrTkT9C0klWFMK4x-KSMqvvPJ7k3TL6U


Execution: We recommend to first double check that
you have created and activated the virtual environments
corresponding to the projects you intend to test. Please
follow the instructions provided in the README file of
each project for execution. For most of the projects, we
have provided a bash file that can be used as an alter-
native for evaluation. Additionally, for projects such as
DeepSniffer, ModelXRay, ML-DOCTOR, Adaptive
Misinformation, and Prediction-Poisoning, we
recommend referring to the orig_README file for more
detailed information regarding the datasets, models, and
attack/defense strategies employed while evaluating.
Finally, for projects ModelXRay and ML-Doctor, it is
necessary to manually specify the path to your model
file. This step may require some customization based on
the user’s specific model configurations.
We have also provided an option to quickly ver-
ify the execution for all projects using the script
file - env-setup.sh (creates the environment) and
quick-test.sh (run each project for a 20-second time
frame) provided in the root directory of the repository.
Once the virtual environment is created using the file
env-setup.sh, you can verify the execution using two
parallel terminals. In one terminal, we have a script
file quick-test.sh that automates the execution of all
projects, one by one, for claims 1 and 2. In the other ter-
minal, PCM can run to monitor the power consumption
of each experiment.
Results: The results for the projects can be observed
while running the provided script files for evalua-
tion of the experiments. Whereas, the results for
projects such as Prediction Poisoning and Adaptive
Misinformation can be found in subfolders of the
models folder located within their respective project
directories. These initial results produced by projects
DeepSniffer, ModelXRay, ML-Doctor, Adaptive
Misinformation, and Prediction-Poisoning will
aid in the analysis of the findings presented in the
original paper. Upon further testing with our real-world
models, you will find the results and challenges that we
have discussed in sections 4.2 and 4.3 of our original
paper.

A.5 Notes on Reusability

The projects featured in our repository are specifically tailored
for execution within a laboratory environment. We strongly
advise readers to refer to the README file, as it serves as a
comprehensive guide for applying model extraction attack-
s/defenses across various model files. Additionally, some at-
tacks may not be practical or cannot be performed on a large
scale, and the corresponding defense solutions are limited in
deployment as well.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


