ARTIFACT
EVALUATED EVALUATED
susenix susenix

ASSOCIATION @ Association

ARTIFACT

AVAILABLE

USENIX Security '24 Artifact Appendix: Abuse Reporting for
Metadata-Hiding Communication Based on Secret Sharing

Saba Eskandarian
University of North Carolina at Chapel Hill
saba@cs.unc.edu

A Artifact Appendix

A.1 Abstract

This paper demonstrates that, for broad classes of metadata-
hiding schemes, lightweight abuse reporting can be deployed
with minimal changes to the overall architecture of the system.
Our insight is that much of the structure needed to support
abuse reporting already exists in these schemes. By taking a
non-generic approach, we can reuse this structure to achieve
abuse reporting with minimal overhead. In particular, we show
how to modify schemes based on secret sharing user inputs to
support a message franking-style protocol. Compared to prior
work, our shared franking technique more than halves the time
to prepare a franked message and gives order of magnitude
reductions in server-side message processing times, as well
as in the time to decrypt a message and verify a report.

The artifacts accompanying the paper consist of the code
for the paper’s evaluation. This artifact appendix contains di-
rections needed to access and run the code for the evaluation
in the body of the paper. This evaluation measures the perfor-
mance of the various algorithms involved when run locally
on a single machine.

The provided GitHub repository also contains the source
code and evaluation data for the supplemental evaluation con-
tained in the paper’s appendices, as well as the data resulting
from our comparison with the results of re-running the code
from prior works. The supplemental evaluation includes code
to run the algorithms and communicate the results over a
network. We do not discuss these materials here.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

The artifact does not pose any particular risk to the evaluators’
machines, data privacy, etc., or raise any other notable ethical
concerns.

A.2.2 How to access

The artifact can be accessed at the follow-
ing stable GitHub URL: https://github.com/

SabaEskandarian/Shared_Franking/tree/
ba9%e81644ba9879e4fcfe57d39842b2aa5076£45.
A.2.3 Hardware dependencies

None.

A.2.4 Software dependencies

The only dependencies for running the software are the C
standard libraries and OpenSSL (confirmed working on ver-
sion 3.0.2).

A.2.5 Benchmarks

None.

A.3 Set-up

The code was run on Ubuntu 20.04, but newer versions should
work just as well. The evaluator needs to set up the machine
for C development and install OpenSSL. Git should be in-
stalled for the purpose of accessing the code.

sudo apt install git build-essential libssl-dev

A.3.1 Installation

Installation simply requires downloading the contents of the
provided git repository.

git clone [repo_address]

A.3.2 Basic Test

Run the following commands for the basic tests.

make test

./test

The expected result is a message saying that the tests
passed.


https://github.com/SabaEskandarian/Shared_Franking/tree/ba9e81644ba9879e4fcfe57d39842b2aa5076f45
https://github.com/SabaEskandarian/Shared_Franking/tree/ba9e81644ba9879e4fcfe57d39842b2aa5076f45
https://github.com/SabaEskandarian/Shared_Franking/tree/ba9e81644ba9879e4fcfe57d39842b2aa5076f45

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Compared to prior work, our shared franking tech-

nique more than halves the time to prepare a franked
message and gives order of magnitude reductions in
server-side message processing times, as well as in the
time to decrypt a message and verify a report. This is
demonstrated in Figure 6 of our paper, where the run-
ning time of shared franking algorithms is displayed next
to those of prior work.

(C2): Server-side operations on the critical path for message

delivery run the fastest and do not noticeably increase in
cost as message lengths or number of servers increase.
This is demonstrated by Figures 3 and 4 of our paper,
where we graph the performance of the different shared
franking algorithms with increasing message sizes and
numbers of servers, respectively.

A.4.2 Experiments
(E1): [Shared Franking Evaluation] [A few minutes]: run

the shared franking evaluation, showing compute costs
for different message sizes and numbers of servers.
How to: Run the code described in the execution sec-
tion below.

Preparation: No additional preparation is needed be-
yond the Basic Test described above.

Execution: run the following code. The results will be
printed and can be sent to a file for later use.

make shared_franking_eval

./shared_franking_eval

Results: The running time for the various components
of shared franking will be run for different message sizes
and different numbers of servers, and the results dis-
played. This contributes to proving claim C1 when com-
bined with repeating the evaluations of the prior works to
which we compare. This also proves claim C2 because
the increase in the server-side processing algorithms’
running time (pl_mean, pis_mean) will be very small.

Note that since the times involved are so small (on the
order of microseconds), systems that have a lot of other
programs running will return fairly noisy results. We find
the results are more consistent when run on a headless
server or a cloud compute instance.

We access and modify the data by putting the output in
a csv file for easy viewing and editing in spreadsheet
software. The numbers for Figure 3 of the paper come
from any row where the number of servers is 2. The
numbers for Figure 4 come from the last 9 rows of the
file, which reports performance for a IKB message with
a number of servers varying from 2 to 10. The numbers

used in Figure 6 come from taking the row with 1KB
message sizes and 2 servers from near the end of the
output.

(E2): [Plain Franking Evaluation] [Under a minute]: run
the plain franking evaluation, showing compute costs
for different message sizes.

How to: Run the code described in the execution sec-
tion below.

Preparation: No additional preparation is needed be-
yond the Basic Test described above.

Execution: run the following code. The results will be
printed and can be sent to a file for later use.

make plain_franking eval

./plain_franking_eval

Results: The running time for the various components
of message franking will be run for different message
sizes, and the results displayed. The numbers will be
lower than those for the shared franking scheme, as this
is a baseline for the scheme used in practice that cannot
be applied to the metadata-hiding setting we consider.
The numbers used in Figure 6 of the paper come from
taking the row with 1 KB message sizes.

Note that since the times involved are so small (on the
order of microseconds), systems that have a lot of other
programs running will return fairly noisy results. We find
the results are more consistent when run on a headless
server or a cloud compute instance.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.


https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


