
USENIX Security ’24 Artifact Appendix: <CAMP: Compiler and
Allocator-based Heap Memory Protection>

Zhenpeng Lin, Zheng Yu, Ziyi Guo, Simone Campanoni, Peter Dinda, and Xinyu Xing
{zplin, zhengyu2027, n7l8m4}@u.northwestern.edu

{simone.campanoni, pdinda, xinyu.xing}@northwestern.edu
Northwestern University

A Artifact Appendix

A.1 Abstract

The paper proposes a heap protection tool that prevents heap
UAF and OOB while introducing mild overhead. The tool
is composed of a set of compiler optimization and fast run-
time support, which are implemented as an LLVM pass and
tcmalloc-based allocator. The paper has two major claims
over its security guarantee and overhead under a bunch of
benchmarks.

This artifact is seeking the Artifacts Available badge, the
Artifacts Functional badge, and the Results Reproduced
badge. To facilitate the artifact evaluation, we have provided
multiple Docker environments. The Docker environments
are designed to reproduce the evaluation results of CAMP,
covering both performance and security evaluations.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

All experiments are run in Docker and will not harm the
computer.

A.2.2 How to access

All artifacts are available in https://
github.com/cla7aye15I4nd/CAMP/tree/
a74a3069adb4aeff2426bba1fd6391c7d1fbb405.

A.2.3 Hardware dependencies

• Processor: We recommend using a 12th Gen Intel i7-
12700 CPU with a clock speed of 4.9 GHz to achieve
results similar to our experiments. However, comparable
hardware may also suffice.

• Memory: A minimum of 32GB RAM.

• Storage: At least 1TB of SSD storage.

A.2.4 Software dependencies

• Docker

• Ubuntu 22.04

A.2.5 Benchmarks

It’s preferable to utilize the SPEC CPU2016 and SPEC
CPU2017 benchmarks. With them, you can manually employ
CAMP for compilation. However, if you don’t possess these
benchmarks, you can alternatively make use of our Docker.
Our Docker provides the SPEC binary compiled with CAMP,
allowing you to reproduce the evaluation results.

A.3 Set-up
You can use the following command to download the Docker
images for each experiment.

$ docker pull dataisland/camp -spec
$ docker pull dataisland/camp -juliet
$ docker pull dataisland/camp -nginx
$ docker pull dataisland/camp -chromium
$ docker pull n7l8m4/camp -u22:v2
$ docker pull n7l8m4/camp -u18:v2
$ docker pull n7l8m4/camp -sudo:v1
$ docker pull

↪→ n7l8m4/camp -chrome -issue:v1

A.3.1 Installation

Create containers using the downloaded Docker images

A.3.2 Basic Test

After creating the corresponding Docker container, you
can enter the Docker container which created from image
dataisland/camp-juliet , and input the following com-
mand. The expected result is shown in Figure 1.

$ cd /root/camp-experiment/juliet
$ python3 test_fp.py 2>/dev/null

https://github.com/cla7aye15I4nd/CAMP/tree/a74a3069adb4aeff2426bba1fd6391c7d1fbb405
https://github.com/cla7aye15I4nd/CAMP/tree/a74a3069adb4aeff2426bba1fd6391c7d1fbb405
https://github.com/cla7aye15I4nd/CAMP/tree/a74a3069adb4aeff2426bba1fd6391c7d1fbb405


Figure 1: Juliet Results

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): CAMP achieves good performance and memory over-
head with the SPEC benchmark and is capable of han-
dling real-world programs. This is substantiated by ex-
periments (E2), (E3), and (E4).

(C2): CAMP able detect all memory corruption in juliet and
CVE benchmarks which mentioned in our paper. This is
proven by the experiments (E1) and (E5).

A.4.2 Experiments

(E1): Security Evaluation on Juliet Dataset
The environment is contained within the Docker image
dataisland/camp-juliet.
How to: Download and create a container using the im-
age dataisland/camp-juliet.
Preparation: None.
Execution: Refer the command below.
Results: If the command does not output [FAIL], it
means all test cases have passed.

$ cd /root/camp -experiment/juliet
$ python3 test_fp.py 2>/dev/null
$ python3 test_fn.py 2>/dev/null

(E2): Performance Evaluation on NGINX
The environment is contained within the Docker image
dataisland/camp-nginx.
How to: Download and create a container using the im-
age dataisland/camp-nginx.
Preparation: None.
Execution: Refer the command below.
Results: The expected output of the command should
similar with Figure 2.

$ cd /root/camp -experiment/nginx
$ ./test_wrk.sh

(E3): Performance Evaluation on Chromiumn The en-
vironment is contained within the Docker image
dataisland/camp-chromiumn.
How to: Download and create a container using the im-
age dataisland/camp-chromiumn.
Preparation: None.

Figure 2: Nginx Results

Execution: Refer to the command below. It is used to
test the loading time of a single website. You can replace
the website field with another website and you can re-
place the camp with native to test the loading time of
native chrome.
Results: The command will generate a screenshot pic-
ture of corresponding website, and output the loading
time. The overhead of CAMP should similar with what
our paper reported.
The environment is contained within the Docker image
dataisland/camp-chromiumn. To run the test, use the
command provided below. Note that you can replace the
specified website with another of your choice.

$ cd /root/chromiumn/src
$ export

↪→ LD_LIBRARY_PATH=/root/CAMP/
↪→ build/src/safe_tcmalloc/tcm
↪→ alloc

$ time ./out/camp/chrome
↪→ --disable -sync --disable -gpu
↪→ --headless --screenshot
↪→ --no-sandbox
↪→ http://www.gmail.com

(E4): Performance Evaluation on SPEC Benchmark The
environment is contained within the Docker image
dataisland/camp-spec. To run the test, use the com-
mand provided below. You will be able to see the time
and memory consuming of each testcases.



How to: Download and create a container using the im-
age dataisland/camp-chromiumn.
Preparation: None.
Execution: Refer to the command below. ./camp.sh
and ./native.sh is used to test the performance of
program compiled by CAMP and NATIVE program on
SPEC CPU2017 and SPEC 2006.
Results: The command will generate multi files which
contain each testcases’ time and memory consuming.
The overhead of CAMP should similar with what our
paper reported.

$ cd /root/camp -experiment/spec
$ ./camp.sh
$ ./native.sh

(E5): Security Evaluation on CVE Benchmark
How to: Download and create container n7l8m4/*
Preparation: None.
Execution: In every container, we have set up test.sh,
test_OOB.sh, test_UAF.sh, in /root directory. Test
can run the test.sh to automatically run the test cases.
Results: We have set up the results evaluation in test
scripts. i.e. the test script can decide if the test succeeds
or fails for protecting the cases. When succeed, auto-
mated test scripts will tell user the results, like "CAMP
Protects OOB Successfully", "CAMP Protects UAF Suc-
cessfully, poison detected" and etc, if it fails, test script
will print "CAMP Failed".

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


