
USENIX Security ’24 Artifact Appendix: Ahoy SAILR! There is No Need to
DREAM of C: A Compiler-Aware Structuring Algorithm for Binary Decompilation

Zion Leonahenahe Basque, Ati Priya Bajaj, Wil Gibbs, Jude O’Kain, Derron Miao,
Tiffany Bao, Adam Doupé, Yan Shoshitaishvili, Ruoyu Wang

Arizona State University
{zbasque,atipriya,wfgibbs,judeo,derronm,tbao,doupe,yans,fishw}@asu.edu

A Artifact Appendix

A.1 Abstract

The SAILR paper introduces a new decompiler, control flow
structuring algorithm, and decompiler evaluation framework.
As such, the main artifacts of SAILR are the ANGR DECOM-
PILER (with the novel SAILR structuring algorithm), the
SAILR evaluation framework, and the decompilation created
as a result of the former artifacts. Additionally, ANGR DE-
COMPILER makes public 3 algorithms previously untestable
(Phoenix, DREAM, and rev.ng). The ANGR DECOMPILER
and the SAILR evaluation framework are written in Python 3
and are provided as a package. Both packages are runnable
through a provided Dockerfile.

SAILR was evaluated on 26 Debian packages compiled
on optimization level O2. The compiled, decompiled, and
measurement artifacts are provided publicly for all decom-
pilers evaluated in the SAILR paper, including closed-source
decompilers. This artifact evaluation aims to show that de-
compiler, structuring algorithms, and evaluation framework
are accessible and functional.

A.2 Description & Requirements

All artifacts should be used on an Ubuntu 22.04 machine with
at least 8 cores and 32GB of RAM. You need to have Python
3, Docker, Java 17, and Graphviz installed on the machine. In
most cases, all experiments are run inside the provided con-
tainer. We provide a frozen version of ANGR DECOMPILER
with SAILR and the SAILR evaluation framework. We also
provide a link to all decompilation generated to create the
results found in Section 8 and Appendix of the main paper.

A.2.1 Security, privacy, and ethical concerns

ANGR DECOMPILER and the SAILR evaluation framework
are Python packages that pose little risk to the user’s ma-
chine. While running Joern, a subcomponent of the SAILR
evaluation framework, a series of ports are used on local-
host (9000+). These ports give access to Joern, which can do

arbitrary code execution if exploited. These ports are only
accessible on localhost.

A.2.2 How to access

All artifacts can be centrally accessed through the SAILR
evaluation framework: https://github.com/mahaloz/sailr-
eval. All instructions are provided through the README
as well as links to all stable links listed below. The
stable link for the evaluation framework and angr decom-
piler can be found at https://github.com/mahaloz/sailr-
eval/tree/e1af48353c1c5b32cc53cbaa015722d57767bd6e
and https://github.com/mahaloz/angr-
sailr/tree/be3855762a84983137696aa14efe2431a86a7e97
respectively. The decompilation results for each decompiler
can be found on the Arizona State University Dropbox at this
link.

A.2.3 Hardware dependencies

To run all artifacts you must have an x86 machine with at least
8 cores and 32GB of RAM. We recommend having 80GB of
storage free on the machine.

A.2.4 Software dependencies

All artifacts should be run on Ubuntu 22.04 with Python 3,
Docker, Java 17, and Graphviz installed on the machine. A
setup.sh script is provided in the evaluation framework code
to install these dependencies on Ubuntu 22.04.

A.2.5 Benchmarks

SAILR was evaluated on 26 Debian packages found at the
Dropbox link in A.2.2. This set should be downloaded and
untared for use in validating the functionality of the evaluation
framework. The total size of the uncompressed dataset is
38gb.

https://github.com/mahaloz/sailr-eval
https://github.com/mahaloz/sailr-eval
https://github.com/mahaloz/sailr-eval/tree/e1af48353c1c5b32cc53cbaa015722d57767bd6e
https://github.com/mahaloz/sailr-eval/tree/e1af48353c1c5b32cc53cbaa015722d57767bd6e
https://github.com/mahaloz/angr-sailr/tree/be3855762a84983137696aa14efe2431a86a7e97
https://github.com/mahaloz/angr-sailr/tree/be3855762a84983137696aa14efe2431a86a7e97
https://www.dropbox.com/scl/fi/ez5ra4yzxrynio7opxquo/results.tar.gz?rlkey=vi5ntdw48a9ohfnd0x8p32ael&dl=0
https://www.dropbox.com/scl/fi/ez5ra4yzxrynio7opxquo/results.tar.gz?rlkey=vi5ntdw48a9ohfnd0x8p32ael&dl=0


A.3 Set-up
A.3.1 Installation

Clone sailr-eval repo and use the setup.sh script to in-
stall the needed dependencies and start building the evaluation
pipeline docker container. This will use approximately 6.5gb.
Note, you will also need to build in the ANGR DECOMPILER
docker container found in the "using angr decompiler" section
of the README.

A.3.2 Basic Test

Use the motivating_example found in the tests folder
to validate the ANGR DECOMPILER. This can be found in
the README after setting up the ANGR DECOMPILER. To
validate the sailreval package installed successfully, run
./eval.py --help. If the script does not crash, the package
is installed correctly.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): The ANGR DECOMPILER reimplements the Phoenix,
DREAM, and rev.ng (combing) control flow structuring
algorithms. It also implements the novel SAILR struc-
turing algorithm which produces decompilation that is
deoptimized. This is proven by experiment (E1).

(C2): The SAILR evaluation framework can be used to mea-
sure decompilation by the same metrics shown in Section
8 of the SAILR paper. This is proven by experiment (E2).

(C3): The decompilation used to generate the results in Table
3 of the SAILR paper is public and aggregatable. This is
proven by experiment (E3).

A.4.2 Experiments

[Mandatory for Artifacts Functional & Results Reproduced,
optional for Artifact Available] Link explicitly the descrip-
tion of your experiments to the items you have provided in
the previous subsection about Major Claims. Please provide
your estimates of human- and compute-time for each of the
listed experiments (using the suggested hardware/software
configuration above). Follows an example:
(E1): [Decompiler Test] [15 human-minutes + 1 build-hour

+ 9GB disk]: In this experiment, the decompilation
shown in Figure 1 of the SAILR paper is reproduced
by running the decompiler
Preparation: First, build the ANGR DECOMPILER
Docker container shown in the "using angr decompiler"
section of the README. This should take no longer than
an hour of build time.
Execution: Using the execution line shown in that sec-
tion of the README. To run each structuring algorithm,
change the —structuring–algo flag. Use sailr, phoenix,

dream, and combing. The combing structuring algorithm
is rev.ng.
Results: Compare the results of sailr, phoenix, and
dream outputs to that in Figure 1 of the SAILR paper.
Each output should look nearly the same (with the ex-
ception of variable names and spacing).

(E2): [Eval Framework Test] [20 human-minutes + 3
compute-hours + 9GB disk]: In this experiment, a simple
measurement is run on one of the 26 Debian packages,
Cronie
Preparation: Make sure you already ran the setup.sh
script.
Execution: Following the examples, use the —compile,
—measure, and —decompiler for the cronie package with
as many cores as you can (specified with —cores). Use
the gotos, bools, func_calls, and cfged metrics to match
the SAILR paper’s metrics.
Results: Following the README, find the
sailr_compiled, sailr_decompiled, and sailr_measured
folders. You should find all decompilers decompilation
in the decompilation folder. You should find tomls in the
measured folder with the results for each decompiler.

(E3): [Data Validation] [30 human-minutes + 5 compute-
minutes + 40GB disk]: In this experiment, decompilation
and measurements from the 26 Debian packages are used
to reproduce the paper results.
Preparation: Download the dataset from Dropbox
linked in A.2.2 and decompress it.
Execution: First, take a look at a few folders, like cronie,
found in the O2 folder of the results. You should notice
that these results look very similar to your results col-
lected in (E2). At the very least, there should be decom-
pilation for each decompiler and some tomls. Next, use
the —summarize–targets command of the eval.py file as
shown in the "SAILR evaluation results files" section of
the README. You only need to edit the —opt–levels in
that command to only have O2.
Results: Look at the last results printed by the script.
These numbers should match up with the numbers shown
in Table 3 of the SAILR Paper.

A.5 Notes on Reusability
The ANGR DECOMPILER can produce decompilation that
may vary in variable names and white spacing on each run.
Due to this, the exact names of each variable shown in the
produced decompilation may differ from the names shown in
the SAILR paper. This is also true for the white spacing.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at

https://github.com/mahaloz/sailr-eval#using-sailr-on-angr-decompiler


https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


