
USENIX Security ’24 Artifact Appendix: SledgeHammer: Amplifying
Rowhammer via Bank-level Parallelism

Ingab Kang
University of Michigan

igkang@umich.edu

Walter Wang
Georgia Tech

walwan@gatech.edu

Jason Kim
Georgia Tech

nosajmik@gatech.edu

Stephan van Schaik
University of Michigan

stephvs@umich.edu

Youssef Tobah
University of Michigan

ytobah@umich.edu

Daniel Genkin
Georgia Tech

genkin@gatech.edu

Andrew Kwong
UNC Chapel Hill

andrew@cs.unc.edu

Yuval Yarom
Ruhr University Bochum

yuval.yarom@rub.de

A Artifact Appendix

A.1 Abstract
This artifact is an implementation of multi-bank hammer-

ing in our paper. It is based on the TRRespass repository and
designed to test bitflips on Intel systems with DDR4 memory.
The code is expected to show a near-linear increase in the
number of total bitflips with the increase of hammered banks
and a jump in the effectiveness of the hammering pattern
when the number of hammered banks is increased from one
to two.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

Running this program should not pose any security, pri-
vacy, or ethical concerns that we know of. By design, bitflips
found by the code are contained in address spaces within the
program. However, it may be possible that the program may
flip a random bit in the system and make the system to be
unstable.

A.2.2 How to access

The code is avaliable at: Github Page Link

A.2.3 Hardware dependencies

Running this program requires a 6th to 10th-generation
Intel processor with a DDR4 compatible mainboard. The
installed DDR4 memory must be susceptible to TRRespass.

A.2.4 Software dependencies

The code requires gcc and Make to compile. DRAM ad-
dressing function in src/main.c must be configured according

to the DRAM configuration. We include the addressing func-
tion for 8GB x8 single DIMM, single channel and 16GB
x8 two DIMMs, dual channel configuration for 6th to 10th-
generation Intel processors. The addressing function can be
configured through src/main.c. Additional addressing func-
tions for different configurations can be discovered using
DRAMA,

The OS should be linux-based and the code requires 1GB
hugepage to be available or transparent hugepages be set to
madvise or always in the OS.

A.2.5 Benchmarks

None.

A.3 Set-up
The machine running the program should satisfy all hard-

ware and software dependencies from the previous section.
While running the program, it is advised that no other program
is running alongside it, as it may interfere with the hammering
process.

A.3.1 Installation

With the test machine setup, cd into multibank_hammer
and run make. Then, run sudo ./hugepage.sh to mount the 1
GB huge page.

A.3.2 Basic Test

After compiling the code, run sudo ./obj/tester -v. In our
configuration, we were able to see a bitflip within the first
minute. If a bitflip is found, there will be a command line
output notifying the user of the flip direction and the row, bank,
and column of the flipped bit. The program will terminate
after 1000 different hammering iterations.

https://github.com/vusec/trrespass
https://github.com/mojomojo52/multibank_hammer/tree/da08966041a11af6c440b1ee06694b448715154c
https://github.com/vusec/trrespass
https://github.com/IAIK/drama


Figure 1: Example of output.

Figure 2: Example of the parser output.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): The provided multi-bank hammering pattern exhibits a
jump in the number of bitflips per bank per hammering
attempt when increasing the number of hammered banks
from one to two.

(C2): The total number of bitflips per hammering attempt
will increase almost linearly with the increase in the
number of hammered banks when increasing from two.
The optimal number of banks would differ per configured
system. In our case, the number of bitflips peaked at 4
banks.

A.4.2 Experiments

By default, the code is configured to hammer 10 aggressors
per bank and increase the number of hammered banks from 1
to 6, hammering 1000 iterations per bank configuration. On
our machine, this took around 2 hours to run.

Preparation: Set the DRAM addressing function in
src/main.c according to the system configuration and
num_aggs in hammer-suite.c to the optimal number of ag-
gressors of the installed DDR4 DIMM and run make.

Execution: run sudo ./obj/tester -v. Parse the result by
running python3 ./parse_result.py data/test.csv -v.

Results: Figure 1 is the an example of the program output.
Line 1 shows the aggressor rows in the order that they are
hammered. line 2 and 4 is the hammering pattern (thp), the 0
and 1 after the pattern indicate whether we’re looking for 0 to
1 flips or 1 to 0 flips, respectively. The number after the colon
is the total time it took for the hammering pattern (ms) and the
time between two ACTs to rows across banks (ns). Note that
because this is across banks, the time between ACTs would be
smaller as ACTs are parallelized. Finally, line 3 is the output
when a bitflip is found. It indicates the flip direction and the
location of the flipped bit. This information, aggressor rows,

timing information, and the bitflips, are also saved as a file in
data/test.csv by default.
Figure 2 is an exemplary output of the parser. thp 0 are the
results for 0 to 1 flips and thp 1 are the results for 1 to 0 flips.
numattks is the total number of different hammering attempts,
patterns is the number of patterns that was able to flip bits, tot.
avg is the average time in ms to run the hammering pattern,
a2a is the average time between activates (across banks), xbk
is the average time between activates within a bank. flips is
the total number of flips across all iterations, and flips/attk is
the total number of flips divided by the number of iterations.

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6

N
um

be
r o

f f
lip

s

Number of banks

Total number of flips

0to1

1to0

Figure 3: Total number of flips plot.

If you plot the total number of flips, it should look like Fig-
ure 3, where the number of flips increases with the number
of banks. In Figure 3, the peak was with 4 banks, a 2.85x
increase in total number of bitflips compared to 1 bank. The
peak number of banks and the total number of bitflips may
differ per configuration.
Figure 4 is the total number of flips divided by the hammering
iterations divided by hammered banks. This is to measure how
effective the hammering pattern is at flipping bits. The plot
should show a jump when increasing the number of banks
from one to two and steadily decline afterwards. In Figure 4



0

0.3

0.6

0.9

1.2

1.5

1.8

1 2 3 4 5 6

Fl
ip

s/
(b

an
k 

* 
ite

ra
tio

n)

Number of banks

Flips/(bank * iteration)

0to1

1to0

Figure 4: Total number of flips / (number of iterations *
number of banks).

the effectiveness jumped by 1.2x compared to a single bank.
The increase in effectiveness may differ per configuration.

A.5 Notes on Reusability
While multi-bank hammering was only tested with n-sided

hammering, the same principles that increased the number of
flips should apply to other hammering patterns, such as Black-
smith. This would allow the user to create more powerful
hammering patterns.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://github.com/comsec-group/blacksmith
https://github.com/comsec-group/blacksmith
https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


