ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

»

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX Security *24 Artifact Appendix: Scalable Multi-Party
Computation Protocols for Machine Learning in the Honest-Majority
Setting

Fengrun Liu

A Artifact Appendix

A.1 Abstract

In this paper, we present a novel and scalable multi-party
computation (MPC) protocol tailored for privacy-preserving
machine learning (PPML) with semi-honest security in the
honest-majority setting. Our protocol utilizes the Damgard-
Nielsen (Crypto’07) protocol with Mersenne prime fields.
By leveraging the special properties of Mersenne primes,
we are able to design highly efficient protocols for securely
computing operations such as truncation and comparison.
Additionally, we extend the two-layer multiplication protocol
in ATLAS (Crypto’21) to further reduce the round complexity
of operations commonly used in neural networks.

In the artifact evaluation, we conduct performance evalua-
tions for oblivious inference in various settings involving dif-
ferent number of parties, including 3-party computation(3PC),
7PC, 11PC, 21PC, 31PC, and 63PC. Our protocol is very scal-
able in terms of the number of parties involved. For instance,
our protocol completes the online oblivious inference of a
4-layer convolutional neural network with 63 parties in 0.1
seconds and 4.6 seconds in the LAN and WAN settings, re-
spectively. To the best of our knowledge, this is the first fully
implemented protocol in the field of PPML that can success-
fully run with such a large number of parties. Notably, even in
the three-party case, the online phase of our protocol is more
than 1.4 x faster than the Falcon (PETS’21) protocol.

A.2 Description & Requirements

We implement the protocol framework using approximately
14.2k lines of code (LOC) in C++. Our implementation lever-
ages the communication backend of MP-SPDZ and the neural
network frontend of Falcon. We conducted a performance
evaluation for inference in various settings involving different
numbers of parties, including 3-party(3PC), 7PC, 11PC, 21PC,
31PC, and 63PC to show the scalability of our framework.

A.2.1 Security, privacy, and ethical concerns

N/A

Xiang Xie

Yu Yu

A.2.2 How to access

The artifact is open-sourced in Git reposi-
tory https://github.com/f7ed/hmmpc-public with
the stable URL https://github.com/f7ed/hmmpc-
public/tree/b7d65e9d43bc3eb1610fc0000e895b8664df8b66
submitted in the Artifact Evaluation.

A.2.3 Hardware dependencies

We strongly recommend readers compile and run the program
on Linux machines since we do not fully test the configura-
tions on other platforms. We developed and tested this artifact
in macOS with Intel processors but we did not test with Apple
Silicon. The hardware-accelerated AES-NI instructions are
required for efficient random number generation.

A.2.4 Software dependencies

As for Linux distributions, we recommend Ubuntu 20.04 LTS
or 22.04 LTS as a platform, on which we conducted all the
experiments and tests. We developed it on macOS Ventura
13.5 with Intel processors for reference. The artifact can be
compiled by g++. For ease of implementation, we embed
the code of the communication backend in MP-SPDZ and
the neural network frontend in Falcon. Hence, it depends
on OpenSSL for secure channels as in MP-SPDZ. It also
depends on the Sodium library to generate randomness. To
accelerate matrix multiplication, we utilize the Eigen library,
the algorithms of which can use multi-threading with OpenMP.
We enable OpenMP by default in our compilation. We have
added Eigen’s header files in our artifact, which are the only
required files to compile with Eigen.

A.2.5 Benchmarks

We employ the widely used MNIST dataset, which consists
of a collection of 28 x 28 pixel images depicting handwritten
numbers. The objective is to accurately predict the corre-
sponding number for each image. We select three standard
neural networks from the field of privacy-preserving machine
learning. Network-A is a 3-layer DNN network derived from
SecureML. Network-B is a 3-layer CNN network derived

https://github.com/data61/MP-SPDZ
https://github.com/snwagh/falcon-public
https://github.com/f7ed/hmmpc-public
https://github.com/f7ed/hmmpc-public/tree/b7d65e9d43bc3eb1610fc0000e895b8664df8b66
https://github.com/f7ed/hmmpc-public/tree/b7d65e9d43bc3eb1610fc0000e895b8664df8b66

from Chameleon. Network-C is a 4-layer CNN network de-
rived from MiniONN. For more specific information and
details about these neural networks, please refer to Appendix
E of the paper.

A.3 Set-up

Follow the "Requirement" of README in the Git repository,
which will guide you through setting up the required
workspace. On Linux, you can execute a single command
to install all the requirements: sudo apt install -y
build-essential cmake libssl-dev libsodium-dev
iproute?2.

A.3.1 Installation

You can use the make all command to compile the program.
The "Makefile" should automate most of the process. For
ease of running multi-party computation, we support many
Bash scripts to support local execution in a single machine
and remote execution over multiple servers. The detailed
instructions to execute locally and remotely are described in
Section 3 and Section 4 of README, respectively.

We strongly recommend readers read Section 3.5, which
describes the key commands executed in the Bash scripts and
enable readers to fully understand what happens in the Bash
scripts.

A.3.2 Basic Test

In order to check all the required dependencies are
installed and the functioning is fine, readers can use
make -j8 network and make -3j8 eigen to test the com-
munication module and the math module. Moreover, we pro-
vide a Bash script to test the primary protocols mentioned in
the paper, enabling readers to catch how these protocols work
and modify the source code easily. The unit tests for protocols
are described in Section A.4.1.

A.4 Evaluation workflow
A.4.1 Major Claims

‘We support unit tests for the primary protocols proposed in
the paper via a Bash script. You can modify the option to
easily test the functionality of each protocol. The usage is
./test_unit.sh [test_name].

Thm 3.4: ./test_unit.sh Trunc conduct a test for Proto-
col 3.1 in the paper. It tests the multiplication between
secret fixed-point numbers and public fixed-point num-
bers, which requires performing a pure truncation.

Thm 3.5 ./test_unit.sh Fixed-Mult conduct a test for
Protocol 3.2 in the paper. It tests the multiplication be-
tween secret fixed-point numbers.

Thm 4.1 ./test_unit.sh PreOR conduct a test for Proto-
col 4.1 in the paper. It tests for computing the prefix-OR
over shared bits.

Thm 4.2 ./test_unit.sh Bitwise-LT conduct a test for
Protocol 4.2 in the paper. It tests for computing the result
of bitwise less-than, given two bitwise sharings.

Thm 5.1 ./test_unit.sh DReLU conduct a test for Proto-
col 5.1 in the paper. It tests for computing the derivation
of ReLU of secret numbers, i.e. the sign bit.

Thm 5.2 ./test_unit.sh ReLU conduct a test for Protocol
5.2 in the paper. It tests for computing the ReLU of secret
numbers.

Thm 5.3 ./test_unit.sh Maxpool conduct a test for the
Protocol 5.3 in the paper. It tests for computing the Max-
pool and its derivation of a vector of sharings.

A.4.2 Experiments

For ease of conducting experiments, we provide Bash scripts
to support local inference in a single machine and remote
inference over multiple servers. All the raw data points of
Table 2-5 figured in the paper are collected in the Excel Tables
located in here.

(E1): Perform oblivious inference locally on a single ma-
chine. The detailed functionality, output, and supported
modifications are described in Section 3.

Preparation: N/A

Execution: ./Scripts/inference.sh <npc> can
simulate any arbitrary parties of odd numbers on a
single machine, to perform the oblivious inference.
Results: It prints the statistical data of Py to the terminal.
The output consists of two parts, the offline part and the
online phase. Except for the time, the communication
size, and the number of rounds, it also counts the number
of different random sharings required in the online phase.

(E2): Perform oblivious inference remotely on multiple
servers. The detailed steps and supported modifications
are described in Section 4. Results of Tables 2, 3, 4 are
conducted in this way.

Preparation: Follow Step 1-Step 3 in Section 4
to compile inference.x and use tc command to
set latency and bandwidth for LAN or WAN. We
offer various scripts to facilitate separate execu-
tion on multiple servers. All scripts are located
in Scripts/infer-<npc> for n = 3,7,11,21,31,63.
Readers only need to modify this script to conduct the
experiment with different settings.

Execution: Detailed instructions for the 7PC setting is
illustrated in Step 4 - Step 5 in Section 4.

Results: It prints the simplified statistical data of Py to
the specified location, including the time and the number
of communication bytes.

https://github.com/f7ed/hmmpc-public/tree/b7d65e9d43bc3eb1610fc0000e895b8664df8b66?tab=readme-ov-file#local-inference-on-a-single-machine
https://github.com/f7ed/hmmpc-public/tree/b7d65e9d43bc3eb1610fc0000e895b8664df8b66?tab=readme-ov-file#remote-inference-over-multiple-servers
https://github.com/f7ed/hmmpc-public/tree/b7d65e9d43bc3eb1610fc0000e895b8664df8b66?tab=readme-ov-file#detailed-command-executed-in-bash-script
https://github.com/f7ed/hmmpc-public/tree/b7d65e9d43bc3eb1610fc0000e895b8664df8b66/Tables
https://github.com/f7ed/hmmpc-public/tree/b7d65e9d43bc3eb1610fc0000e895b8664df8b66?tab=readme-ov-file#local-inference-on-a-single-machine
https://github.com/f7ed/hmmpc-public/tree/b7d65e9d43bc3eb1610fc0000e895b8664df8b66?tab=readme-ov-file#remote-inference-over-multiple-servers
https://github.com/f7ed/hmmpc-public/tree/b7d65e9d43bc3eb1610fc0000e895b8664df8b66?tab=readme-ov-file#remote-inference-over-multiple-servers
https://github.com/f7ed/hmmpc-public/tree/b7d65e9d43bc3eb1610fc0000e895b8664df8b66?tab=readme-ov-file#remote-inference-over-multiple-servers

A.5 Notes on Reusability

We recommend readers understand the meanings of vari-
ables/fields in the scripts, which greatly facilitate you to con-
duct experiments with desirable settings. More details about
these modifiable fields are described in Section 3.3 and Step
5 in Section 4.2 of README.

Note that all the raw data points in the Excel tables (located
in here) are collected in the setting of TRUE_OFFLINE=1
where the random sharings are generated in a separate pre-
processing phase totally before the online phase, and the com-
munication size is the average of the communication bytes
sent by all parties. Hence, if you want to reproduce the result,
you need to set TRUE_OFFLINE=1.

A.6 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://github.com/f7ed/hmmpc-public/tree/b7d65e9d43bc3eb1610fc0000e895b8664df8b66?tab=readme-ov-file#supported-settings
https://github.com/f7ed/hmmpc-public/tree/b7d65e9d43bc3eb1610fc0000e895b8664df8b66?tab=readme-ov-file#separate-execution-with-scripts
https://github.com/f7ed/hmmpc-public/tree/b7d65e9d43bc3eb1610fc0000e895b8664df8b66/Tables
https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

