
USENIX Security ’24 Artifact Appendix: MODELGUARD:
Information-Theoretic Defense Against Model Extraction Attacks

Minxue Tang1, Anna Dai1, Louis DiValentin2, Aolin Ding2, Amin Hass2,
Neil Zhenqiang Gong1, Yiran Chen1, Hai "Helen" Li1

1Department of Electrical and Computer Engineering, Duke University
2Cyber Security Lab, Accenture

1{minxue.tang, anna.dai, neil.gong, yiran.chen, hai.li}@duke.edu
2{louis.divalentin, a.ding, amin.hassanzadeh}@accenture.com

A Artifact Appendix

A.1 Abstract
This appendix will introduce the roadmap to evaluate the
artifact and reproduce the major results in the paper Model-
Guard: Information-Theoretic Defense Against Model Extrac-
tion Attacks. Specifically, this appendix will introduce how to
use the source codes available on GitHub: https://github.
com/Yoruko-Tang/ModelGuard/releases/tag/v1.0, in-
cluding environment installation, dataset preparation, script
execution, and result collection.

A.2 Description & Requirements
This section includes necessary information for recreating the
experimental setup used in the paper, including how to access
the source codes, hardware and software requirements, and
how to prepare the required datasets.

A.2.1 Security, privacy, and ethical concerns

Since we are simulating the attack and defense on a single ma-
chine, evaluating this artifact will not lead to security, privacy,
or ethical issues.

A.2.2 How to access

Use the following link to access our code on GitHub:
https://github.com/Yoruko-Tang/ModelGuard/
releases/tag/v1.0. You can download the project and
unzip it without Git on your machine, or simply use the
"git clone" command to clone the project with Git on your
machine.

A.2.3 Hardware dependencies

We recommend evaluating our code with a machine running
Linux OS. The machine should be equipped with at least

128GB RAM and a GPU that supports CUDA and has at
least 24GB GPU memory. We used a machine running Linux
5.15.0 with two Intel Xeon Gold 6254 CPUs (36 cores, 72
threads, and 1.5TB Memory in total) and one NVIDIA TITAN
RTX GPU (CUDA 10.2 and 24GB Memory) to get all the
results in the paper.

A.2.4 Software dependencies

The code is tested with Python 3.8. We require some standard
libraries such as Pytorch, Numpy, PuLP, etc. You can follow
the instructions in the "readme" file to install all the software
dependencies.

A.2.5 Benchmarks

We require 8 datasets to reproduce the main result in the
paper: SVHN, CIFAR10, CIFAR100, TinyImageNet200, In-
door67, CUB200, Caltech256, and ImageNet1k. You need to
download all the datasets before running any codes. Please
follow the instructions in the "readme" file to download all
the datasets and unzip them in "./data/".

A.3 Set-up
This section will introduce how to set up the environment for
running experiments quickly.

A.3.1 Installation

Please follow the following steps to install the software de-
pendencies on your machine.
1. CUDA Installation You need to make sure that a CUDA

Toolkit with a version later than 10.2 is properly installed
on your machine. Please check the official website of
CUDA Toolkit for instructions: https://developer.
nvidia.com/cuda-downloads.

2. Anaconda Installation You need to install Anaconda in
order to install the other Python packages easily. Please

https://github.com/Yoruko-Tang/ModelGuard/releases/tag/v1.0
https://github.com/Yoruko-Tang/ModelGuard/releases/tag/v1.0
https://github.com/Yoruko-Tang/ModelGuard/releases/tag/v1.0
https://github.com/Yoruko-Tang/ModelGuard/releases/tag/v1.0
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads

check the official website of Anaconda for instructions:
https://www.anaconda.com/download/.

3. Python Package Installation You need to install all the
required packages following the instructions in the
"readme" file of the repository. Note that different GPUs
may require different Pytorch releases. If you are un-
able to use the default release after creating the envi-
ronment following the instructions in "readme", please
install a proper version of Pytorch following the in-
structions in the official website: https://pytorch.
org/get-started/previous-versions/. Note that
our code requires PyTorch 1.7.

A.3.2 Basic Test

Use the following commands in shell to check if Python,
Pytorch, CUDA and PuLP are properly installed.

py thon
i m p o r t t o r c h
i m p o r t pu lp
p r i n t (t o r c h . cuda . i s _ a v a i l a b l e ())

If no error is reported and the final output is "True", then all
the dependencies are installed properly.

A.4 Evaluation workflow
This section will introduce how to run the codes and reproduce
the major results (Table 2 to Table 5) in the paper.

A.4.1 Major Claims

You should be able to reproduce the results from Table 2 to
Table 5, which supports the following major claims:
(C1): pBayes Attack outperforms other attacks. This is

proven by comparing the results of different attacks col-
lected in (E1).

(C2): MODELGUARD-S outperforms other defenses when
defending against strong adaptive attacks while main-
taining high utility. This is proven by comparing the
results collected in (E1) and (E2).

A.4.2 Experiments

Please complete the following steps to verify the major claim
in the last section.
(E0): [Run scripts] [10 human-minutes + 800 compute-hour

+ 100GB disk]: Run the Python scripts provided in the
"/scripts/" directory of the repository, one for each table.
Preparation: Make sure all the dependencies are in-
stalled properly, as introduced in previous sections.
Execution: Run all four scripts in the shell window. For
example, using the following command will run all the
experiments in Table 2 (Xt =Caltech256, wt =resnet50,
Xq =ImageNet1k):

py thon s c r i p t s / r u n _ c a l t e c h 2 5 6 . py

You can change the device for running the experiments
by editing "dev_id" in the scripts (Line 7) if you have
multiple GPUs on your machine. You must keep the
shell window alive during the process.
Results: The results of each pair of attack and defense
methods are stored in the following directory:
"./models/final_bb_dist/[Xt]-[wt]/[query strategy]_ [at-
tack strategy]-[Xq]-B50000/[defense method]".
For example, when Xt is Caltech256, the results of
KnockoffNet (random) with pBayes Attack (bayes)
against ModelGuard-S (ε = 1.0) are stored in
"./models/final_bb_dist/Caltech256-
resnet50/random_bayes-ImageNet1k-
B50000/modelguards/eps1.0".
For JBDA-TR, the directory is
"./models/final_bb_dist/Caltech256-
resnet50/jbtr3_bayes-ImageNet1k-
B50000/modelguards/eps1.0".
Notice that only AM and RevSig are evaluated against
Top-1 Attack because the other defenses do not change
the top-1 label and the results are the same as that of
the Top-1 Defense against Naive Attack. In addition,
None Defense is not evaluated against D-DAE, D-DAE+
and pBayes attacks because the results of these strong
adaptive attacks against no defense should be the same as
that of the Naive Attack against no defense, as we allow
them to know all the details of the defense method.

(E1): [Collect substitute model accuracy/fidelity] [1 human-
hour + 0 compute-hour]: Collect the accuracy and fidelity
of the substitute model for each pair of attack and defense
methods from the results generated in (E0). This will
give you the results in the first 14 rows of each table.
How to: A "train.50000.log.tsv" (KnockoffNet) or
"train.50002.log.tsv" (JBDA-TR) file in each directory
generated in (E0) logs the test accuracy and fidelity along
the whole training procedure. You can get the best accu-
racy/fidelity in the last column of the last row in this file
for the corresponding pair of attack and defense. After
getting the results of all attacks against one defense, you
can get the maximal accuracy and fidelity among all at-
tacks as the "Max Accuracy of ws" and "Max Fidelity of
ws" for this defense method.

(E2): [Collect target model utility] [1 human-hour + 0
compute-hour]: Collect the max ℓ1 distortion and the
protected accuracy of the target model for each defense
method from the results generated in (E0). This will give
you the results in the last 2 rows of each table in the pa-
per. Notice that these results are irrelevant to the attack
method and are determined by the query dataset Xq and
the defense method.
Max ℓ1 Distortion: A "distancetransfer.log.tsv" file
logs the perturbation statistics when querying. You can
get the max ℓ1 distortion in the second column of the

https://www.anaconda.com/download/
https://pytorch.org/get-started/previous-versions/
https://pytorch.org/get-started/previous-versions/

last row in this file for the corresponding defense.
Protected Accuracy: A "bboxeval.xxxxx.log.tsv" file
logs the protected accuracy of the given defense, where
"xxxxx" is the size of the test set (for example, 6400
for Caltech256). You can get the test accuracy of the
protected model in the last column of this file for the
corresponding defense.

A.5 Notes on Reusability
The scripts provided in the repository can only run experi-
ments on predefined settings. While completing all the exper-
iments may take a very long time (over 200 hours for each
script), you can skip some attacks and defenses by editing
the "query_list" (Line 40), "attack_list" (Line 41), and "de-
fense_list" (Line 42) in the scripts. For example, you can only
run (KnockoffNet) + (Naive Attack, pBayes Attack) against
(None Defense, ModelGuard-W, ModelGuard-S) by using:

q u e r y _ l i s t = [’ random ’]
a t t a c k _ l i s t = [’ na ive ’ , ’ bayes ’]
d e f e n s e _ l i s t = [’ none ’ ,

’ modelguard_w ’ ,
’ modelguard_s ’]

which will take less than 20 hours for each script. We also
encourage you to explore more customized running options
as instructed in the "readme" file.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

