
USENIX Security ’24 Artifact Appendix: Cascade: CPU Fuzzing via
Intricate Program Generation

Flavien Solt
ETH Zurich

Katharina Ceesay-Seitz
ETH Zurich

Kaveh Razavi
ETH Zurich

A Artifact Appendix

A.1 Abstract

In our Artifact, we provide the source code of Cascade and
the tested designs. We provide the framework for performing
the experiments described in this paper and analyzing the
corresponding results. The Artifact is a precomputed Docker
image, where all the results are readily present and can be
re-computed at will. It aims at showing that Cascade is open-
source and functions as described in the paper. It additionally
allows reproducing the most important results of the paper
that motivate and evaluate Cascade.

A.2 Description & Requirements

Software requirements Docker, tar and make are the only
software requirements. Reproducers are free to run the ex-
periments natively by following the steps performed in the
Dockerfile.

Hardware requirements To reproduce the experiments,
we expect a machine with at least 16 GB of RAM and 200
GB of free storage. Machines of at least 64 cores are preferred,
but this is not a hard requirement.

A.2.1 Security, privacy, and ethical concerns

The risk that Reproducers face corresponds to the risk of
running code from generally popular open-source repositories
inside a Docker container.

A.2.2 How to access

The artifact repository is available at
https://github.com/comsec-group/cascade-artifacts/
tree/2b797b546629a2df6010abd96e293044cd3cd285.

A.2.3 Hardware dependencies

None.

A.2.4 Software dependencies

Docker, tar and make.
Questasim (commercial EDA software) is optional.

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

1. Method 1 (computation-intensive): Clone the git repos-
itory, then run make build. More information can be
found in the repository’s Readme.

2. Method 2 (no computation): get the Docker image, then
extract the pre-generated figures as specified in the repos-
itory’s Readme.

A.3.2 Basic Test

In the cloned repository, you can run make build to start the
Docker image build process. If you pulled the Docker image,
you can find the figures in /cascade-meta/figures/ in the
Docker image as specified in the repository’s Readme.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Long programs tend to be more effective for fuzzing
CPUs. This is shown by Figures 7, 8, 9 and 16.

(C2): DifuzzRTL executables have low completion, preva-
lence and dependencies. This is shown by Figures 1, 2
and 11.

(C3): Cascade executables significantly improve prevalence
and dependencies. This is shown by Figures 10 and 12.

(C4): Cascade improves coverage over state-of-the-art
fuzzers. This is shown by Figures 13, 14 (optionally
15, yet Figure 13 already shows a comparison with Di-
fuzzRTL).

(C5): Cascade finds most of the bugs very fast. This is shown
by Figures 16 and 18.



A.4.2 Experiments

(E1): [Re-build the Docker image] [5 human minutes, 24
machine hours] (Optional):
How to: In the cascade-artifacts repository, exe-
cute make build.
Preparation: None.
Execution: See How to.
Results: The Docker image build must eventually suc-
ceed, as will be displayed by Docker.

(E2): [Extract the plots] [5 human minutes, 5 machine min-
utes]:
How to: Create a Docker container from the down-
loaded or built Docker image, then extract the plots using
docker cp as documented in the Readme in the artifacts
repository.
Preparation: Execute the make run command in the
cascade-artifacts repository. This will ensure that
a Docker container is running, whose identifier can be
used for copying out the results.
Execution: Execute the docker cp instructions speci-
fied in the Readme of the cascade-artifacts reposi-
tory.
Results: The figures will be copied into the figures
directory of the cascade-artifacts repository.

(E3): [Collect Questasim coverage] [4 human hours, 24 ma-
chine hours] (Optional):
This optional experiment is only accessible to users with
Questasim licenses. The estimated human hours corre-
spond to the preparation of the environment, which may
be non-trivial. Most of the machine time is spent in merg-
ing the coverage files, which must be done sequentially
to obtain the coverage increase at program granularity.
How to: Follow the steps described in the
cascade-artifacts Readme.
Preparation: Either have Questasim work in the
Docker container, or reproduce the Docker steps on
a bare-metal Linux machine. We recommend using
Ubuntu to ensure closeness with the Dockerfile, so you
are certain that your dependencies will work, yet there
is no strict distribution requirement.
Results: cascade-meta/figures/modelsim.png

A.5 Notes on Reusability
• Regarding the experiments, as indicated in the
cascade-artifacts Readme, some experiments may
be run with reduced parameters to complete in a rea-
sonable amount of time, while conserving the tendency
shown in the paper.

• Regarding the fuzzer, new designs can be
added in the same way as the evaluated de-
signs are integrated. Please refer to Readme.md,
cascade-meta/design-processing/

design_repos.json and
cascade-meta/fuzzer/common/designcfgs.py.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


