
USENIX Security ’24 Artifact Appendix: VeriSimplePIR

Leo de Castro
Massachusetts Institute of Technology

Keewoo Lee
Seoul National University

A Artifact Appendix

A.1 Abstract

This artifact is a C++ implementation of VeriSimplePIR as
well as VLHE PIR and SimplePIR. The library is meant as
a stand-alone implementation with minimal dependencies.
All protocols are parametrized by a database defined by a
number of entries N and an entry bitwidth d. Internal scripts
automatically select secure parameters based on the desired
machine word size (either 32 bits or 64 bits).

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

The code can be accessed at this github
repo (artifact evaluation branch): https:
//github.com/leodec/VeriSimplePIR/tree/
3643bb7cbaae02da98a195c4d004d4d083e3ab88.

A.2.3 Hardware dependencies

This library was tested on Ubuntu 20.04.6 LTS on a machine
with an Intel i7 core and 32 GB of RAM. It should work on
any machine with clang++ and OpenSSL.

A.2.4 Software dependencies

Aside from the compiler and OpenSSL, there are no software
dependencies for this library.

A.2.5 Benchmarks

None.

A.3 Setup
A.3.1 Installation

Full instructions to build the library are in the README.md
file in the github repo. These instructions essentially consist
of running make in the top directory. Further details on the
internal parameters to achieve optimal performance are in this
README.md file.

A.3.2 Basic Test

The executable files are located in the bin/demo directory. To
execute a basic test, run ./bin/demo/test/pir_test from
the top directory. This will run the following four tests with a
1 MiB database:

1. Semi-honest PIR (SimplePIR).

2. VLHE PIR.

3. VeriSimplePIR without the proof generation. This is
functionally equivalent to the first test, but it uses the
VeriSimplePIR class.

4. Full VeriSimplePIR test.

A.4 Evaluation workflow
A.4.1 Major Claims

VeriSimplePIR Performance. The claims of VeriSimplePIR
performance are described in section 6 and figures 7 & 8 of
the paper.

As an example, for a 4 GiB database, VeriSimplePIR has
a digest download of 1.56 GiB, a preprocessed ciphertext
upload of 17.25 MiB and a preprocessed download of 24.205
MiB. The runtime of the encryption of the client’s prepro-
cessed message is roughly 6 seconds, the server’s computation
of the Z matrix takes about one minute, and the proof that this
computation was performed correctly takes about 16 seconds.

https://github.com/leodec/VeriSimplePIR/tree/3643bb7cbaae02da98a195c4d004d4d083e3ab88
https://github.com/leodec/VeriSimplePIR/tree/3643bb7cbaae02da98a195c4d004d4d083e3ab88
https://github.com/leodec/VeriSimplePIR/tree/3643bb7cbaae02da98a195c4d004d4d083e3ab88


The client then takes about 15 seconds to verify that the result
ciphertext is valid, and then another 5 seconds to decrypt the
Z matrix and check this matrix against the original digest.

The client storage in the online phase is 686 MiB. The per
query upload and download is about 351 KiB each way. The
client’s query generation takes about 120 milliseconds, the
server takes about 620 milliseconds to generate an answer, the
client takes about 6 milliseconds to verify this answer against
the preprocessed proof, and then another 33 milliseconds to
decrypt the result.

VLHE PIR Performance. The claims of VLHE performance
are described in section 6.1.

As an example, for a 4 GiB database, the offline download
is about 3.4 GiB. The runtime of the query generation is
about 26 milliseconds, and the size of the upload is about 78
KiB. The server takes about 565 milliseconds to generate
the encrypted answer and another 10 seconds to generate
the proof that this ciphertext was well-formed. The size of
the answer ciphertext is about 1.7 MiB, and the size of the
proof is about 1.64 MiB (the parameters are chosen so that
these values are roughly balanced). The client takes about 3
seconds to verify this proof against the digest and then about
153 milliseconds to decrypt the result.

A.4.2 Experiments

The computational benchmark files both construct a protocol
object that is parametrized by a number of database entries N
and a database entry bitwidth d. The only other parameters
are flags that toggle variation options, including the honest
digest assumption. Note that in order to achieve the fastest
possible online time for SimplePIR and VeriSimplePIR, the
BASIS parameter must be set to log(p) as described in the
README.md. Note that only changes to BASIS that change the
number of plaintext elements that can be packed into a single
Elem type will have an effect on the performance.

VeriSimplePIR Computation Performance [3-5 min-
utes of compute time, depending on database parame-
ters]: The benchmark of VeriSimplePIR is in the file
bin/demo/bench/preproc_pir_bench. This benchmark
proceeds in three phases. The first is the server computation
benchmark. The second is the client computation benchmark.
Finally, the online computation of both the client and the
server are benchmarked. The split is to reduce the RAM re-
quirement for the offline benchmarks, which do not use the
packed database as the operations are not memory-bound.

To take a benchmark of VeriSimplePIR with an honest
digest, simply set the honestHint flag to true when the
VeriSimplePIR object is constructed.

The bulk of the time for this benchmark is spent on the
offline phase, and the file is able to run only the online bench-
marks by commenting out the offline benchmark functions in
the main method.

VLHE PIR Computation Performance [0.5-5 min-
utes of compute time, depending on database param-
eters]: The benchmark of VLHE PIR is in the file
bin/demo/bench/pir_bench. This benchmark simple gen-
erates a simulated packed database, then runs through the
operations. The VLHEPIR class has a flag in the constructor
to indicate if the honest digest assumption is active; set this
flag to true to take a benchmark with an honest digest.

SimplePIR Computation Performance [0.5-5 minutes
of compute time, depending on database parameters]:
The benchmarks for our implementation of SimplePIR
can be run by toggling the simplepir flag in the VLHE
constructor. We provide a separate benchmark file in
src/demo/bench/simplepir_bench.cpp for convenience.
Note that the textbook SimplePIR protocol uses a 32-bit modu-
lus, which can be set with the Elem parameter to uint32_t as
described in the README. The benchmarks for the 64-bit ver-
sion of SimplePIR can be run by leaving Elem as uint64_t.

Communication Benchmarks [< 1 minute of compute
time]:

We provide a script in src/demo/scripts/params.cpp
that runs the parameter generation method as a stand-alone
function. This function is fully general and can compute pa-
rameters for the optimal online communication for VeriSim-
plePIR, VLHEPIR, and SimplePIR. The option flags are
documented in the file. The file can be run by executing
bin/demo/script/params from the top directory.

Plots: All plots in our paper can be generated in the plots/
directory. These files were run using matplotlib on Python
3.8.

A.5 Notes on Reusability
The compile-time parameters of this artifact are designed to
help a user achieve high performance for their specific ap-
plication. To load a custom database into the library, the
Database class will need a new constructor to load the cus-
tom data. However, we provide a portable multi-precision
integer type to store the data values, so this code can natively
support data entries that are larger than any machine word.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Setup
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


