
USENIX Security ’24 Artifact Appendix: GHUNTER: Universal Prototype
Pollution Gadgets in JavaScript Runtimes

Eric Cornelissen
KTH Royal Institute of Technology

Mikhail Shcherbakov
KTH Royal Institute of Technology

Musard Balliu
KTH Royal Institute of Technology

A Artifact Appendix

A.1 Abstract
The artifacts develop lightweight taint analysis on top of the
JavaScript runtimes Node.js and Deno with the goal of identi-
fying prototype pollution gadgets. In particular, each artifact
modifies the V8 JavaScript engine shared by Node.js and
Deno as well as some minor aspects of each runtime itself;
these changes are present as .patch files in the artifact. Ad-
ditionally, each builds on top of the project with tooling to
run our analysis and generate results. Finally, the last arti-
fact constitutes modifications to Silent Spring used for the
comparison between GHUNTER and Silent Spring.

We demonstrate the functionality and reproducibility of
the analysis artifacts and evaluate the effectiveness of our
analysis against Silent Spring in terms of precision and recall.
The results of the former refer to Section 5.1 and Table 1, 5
and 6 while the latter refers to Section 5.2 and Table 2 and 3.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

There are no risks for the users relating to security and privacy
of their machines. The artifact has been used to detect gadgets
in production-ready software and these vulnerabilities have
been responsibly disclosed to the vendors.

A.2.2 How to access

The artifacts are accessible on GitHub at github.com/KTH-
LangSec/ghunter/tree/23abc11 which encompasses three sub
projects: the Deno analysis artifact, the Node.js analysis arti-
fact, and the Silent Spring comparison artifact.

A.2.3 Hardware dependencies

We performed the experiments described in this appendix on
an AMD Ryzen 7 3700x 8-core CPU (3.60GHz) with 32 GB
RAM and 50 GB of disk space. No specific hardware features
are required for the artifact evaluation.

A.2.4 Software dependencies

We performed the experiments on the Ubuntu 22.04 OS. We
used Docker as an OCI container runtime.

A.2.5 Benchmarks

Deno v1.37.2 We run our gadget detection analysis against
Deno version 1.37.2. The source code of this benchmark
is incorporated as git submodules in the ghunter4deno
sub project (named deno, deno_core, and rusty_v8).
Section 5.1 and Table 1 of the paper reports the aggregate
number of gadgets detected and Table 6 of the paper
reports all the detected first-order gadgets in detail.

Deno standard library v0.204.0 In addition to Deno
v1.37.2, we run our gadget detection analysis against the
Deno standard library version 0.204.0. The source code
of this benchmark is incorporated as a git submodule
in the ghunter4deno sub project (named deno_std).
Section 5.1 and Table 1 and 6 also report on this
benchmark.

Node.js v21.0.0 We run our gadget detection analysis against
Node.js version 21.0.0. The source code of this
benchmark is incorporated as a git submodule in the
ghunter4node sub project (named node). Section 5.1
and Table 1 of the paper reports the aggregate number
of gadgets detected and Table 5 of the paper reports all
the detected first-order gadgets in detail.
Additionally, we run our gadget detection analysis
against Node.js version 21.0.0 for a comparison to Silent
Spring. The test cases for this comparison are located
src/ss21. Section 5.2 and Table 3 of the paper reports
on the results of this analysis.

Node.js v16.13.1 We run our gadget detection analysis
against Node.js version 16.13.1 for a comparison to
Silent Spring. The test cases for this comparison are
located src/ss16. Section 5.2 and Table 2 of the paper
reports on the results of this analysis.

Silent Spring We compare our results against those of Silent
Spring. We do this on both Node.js v16.13.1 and
v21.0.0. Our adaptation of Silent Spring is located in

https://github.com/KTH-LangSec/ghunter/tree/23abc1188b32868981b268e59058b6d96f2c421b
https://github.com/KTH-LangSec/ghunter/tree/23abc1188b32868981b268e59058b6d96f2c421b


the silentspring4ghunter sub project. This bench-
mark re-embeds the respective Node.js benchmarks on
separate commits (a6ae944 and 14966b5 resp.). Section
5.2 and Table 2 and 3 (resp.) of the paper report on the
results of this analysis.

A.3 Set-up

We provide two modes for testing the Deno and Node.js ar-
tifacts (1) a prepared OCI container and (2) instructions on
how to set up the environment from scratch. We only provide
instructions on how to set up the environment from scratch
for the Silent Spring artifact.
(S1): Deno. For the analysis of Deno use either the OCI con-

tainer image ghcr.io/kth-langsec/ghunter4deno1

by pulling it, launching it, and attaching a shell. Al-
ternatively, build the container image by following the
instructions from the README of github.com/KTH-
LangSec/ghunter4deno at commit 63a9faa. In this
mode, the users may skip the rest of (S1) and (I1).
For a local set-up, clone github.com/KTH-
LangSec/ghunter4deno with submodules recursively
and checkout commit 63a9faa. Then continue with
(I1).

(S2): Node.js. For the analysis of Node.js use
either the OCI container image by pulling
ghcr.io/kth-langsec/ghunter4node2, launch-
ing it, and attaching a shell. Alternatively, build the
container image by following the instructions from the
README of github.com/KTH-LangSec/ghunter4node
at commit 86aad7c. In this mode, the users may skip
the rest of (S2) and (I2).
For a local set-up, clone github.com/KTH-
LangSec/ghunter4node with submodules recursively
and checkout commit 86aad7c. Then continue with
(I2).

(S3): Silent Spring. For the comparison to Silent Spring,
clone github.com/KTH-LangSec/silentspring4ghunter
with submodules recursively. For the comparison on
Node.js v16.13.1 checkout commit a6ae944 and for
the comparison on Node.js v21.0.0 checkout commit
14966b5. In either case, continue with (I3)-(I5).

A.3.1 Installation

(I1): Deno development prerequisites. See
github.com/denoland/deno-docs commit 7b4aa84
file building_from_source.md.

(I2): Node.js development prerequisites. See
github.com/nodejs/node commit 38d0e69 file
BUILDING.md.

1a4c29470545af82a0d8b446e1594ba4e78ad45babdf3af51c72f54fad1c35860
2a2b09930d54d652f192d086a91186d5d9d94c14f2deae451b88e563fcb38231a

(I3): CodeQL v2.9.2. Download and unzip an asset for your
platform of version 2.9.2 from the official repository.
Add the path of the codeql folder to PATH environment
variable.

(I4): Node.js v16.13.1. Follow the instructions on the offi-
cial website to install Node.js version 16.13.1 for the
comparison on this Node.js version.

(I5): Node.js v21.0.0. Follow the instructions on the official
website to install Node.js version 21.0.0 for the compari-
son on this Node.js version.

A.3.2 Basic Test

(B1): Deno. We recommend running the source-to-sink anal-
ysis with a single test case as a basic test. First build us-
ing ./make.sh s2s sync, then run the basic test using
./analyze.sh 2 20 basic-test. The first command
compiles Deno and can take up to an hour, the latter runs
a simple analysis that should take about one minute. This
is expected to yield about 6 gadget candidates.

(B2): Node.js. We recommend running the source-to-sink
analysis with a single test case as a basic test. We provide
a script to perform this test, ./nodejs-test-one.sh.
This will build Node.js for the analysis and run the anal-
ysis with a single test. This command compiles Node.js,
which can take up to an hour, and runs a simple analysis
that should take about one minute. This is expected to
yield about 10 unique source-to-sink pairs after filtering.

(B3): Silent Spring. Follow the basic test instructions for the
original Silent Spring artifact.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): Our dynamic analysis tool applied to Deno uncovered
67 universal gadgets. This is evaluated by experiment
(E1) and described in Section 5.1 and Table 6 of the
paper.

(C2): Our dynamic analysis tool applied to Node.js uncov-
ered 56 universal gadgets. This is evaluated by experi-
ment (E2) and described in Section 5.1 and Table 5 of
the paper.

(C3): Our dynamic analysis tool has higher precision and
recall than Silent Spring for finding universal gadgets
on two different Node.js versions. This is evaluated by
experiment (E3)-(E6) and described in Section 5.2 of
the paper.

A.4.2 Experiments

We describe a total of 6 experiments, 2 related to claims (C1)
and (C2) and 4 related to (C3). The former cover the first 3
benchmarks and the latter cover the last 3 benchmarks.

https://github.com/KTH-LangSec/ghunter4deno/tree/63a9faaa440c9eb8a80f1a5cdabda894b6cc0fe2
https://github.com/KTH-LangSec/ghunter4deno/tree/63a9faaa440c9eb8a80f1a5cdabda894b6cc0fe2
https://github.com/KTH-LangSec/ghunter4deno/tree/63a9faaa440c9eb8a80f1a5cdabda894b6cc0fe2
https://github.com/KTH-LangSec/ghunter4deno/tree/63a9faaa440c9eb8a80f1a5cdabda894b6cc0fe2
https://github.com/KTH-LangSec/ghunter4node/tree/86aad7cf43aad4ef29c6cf799fdfe7e97930a9c5
https://github.com/KTH-LangSec/ghunter4node/tree/86aad7cf43aad4ef29c6cf799fdfe7e97930a9c5
https://github.com/KTH-LangSec/ghunter4node/tree/86aad7cf43aad4ef29c6cf799fdfe7e97930a9c5
https://github.com/KTH-LangSec/silentspring4ghunter
https://github.com/KTH-LangSec/silentspring4ghunter/tree/a6ae944d8c4bcd5aae020d018e9e63cebb229cde
https://github.com/KTH-LangSec/silentspring4ghunter/tree/14966b50550fdb0f8c8888c6642c5a86bf1e661c
https://github.com/denoland/deno-docs/tree/7b4aa843f7b8315b0f5129af16521b7a44100c8e
https://github.com/nodejs/node/tree/38d0e69347de4db532a3bb6bddf51ead9ff764f8
https://nodejs.org/en
https://nodejs.org/en
https://nodejs.org/en
https://nodejs.org/en


(E1): Analysis of Deno, 10 human-minutes + <4 compute-
hours + 50GB disk: Full analysis of the Deno runtime
for universal gadgets.
Set-up: Follow (S1).
Preparation: Follow (B1).
Execution: Start ./run.sh, optionally with a number
of workers (default 5) and test timeout (default 20s) as
./run.sh <W> <T>.
Results: The output at the end of the analysis provides a
table of which expected gadget candidates from Table 6
of the paper were found as well as the analysis numbers
from Section 5.1 (paragraph Analysis of Deno); This
output can be recomputed by running the numbers.sh
script after the analysis has finished. The exact numbers
may differ but are expected to be similar. The folder
_aggregate will contain the final two SARIF files for
manual analysis, which can be compared to the SARIF
files in the results directory.

(E2): Analysis of Node.js, 10 human-minutes + <4 compute-
hours + 50GB disk: Partial analysis of the Node.js run-
time for universal gadgets in the child_process API.3

Set-up: Follow (S2).
Preparation: Follow (B2).
Execution: Start ./run-child_process-s2s.sh,
optionally with a number of workers (de-
fault 5) and test timeout (default 20s) as
./run-child_process-s2s.sh <W> <T>, to per-
form the source-to-sink analysis.
After the script has finished, start
./run-child_process-crashes.sh, op-
tionally with a number of workers (de-
fault 5) and test timeout (default 20s) as
./run-child_process-crashes.sh <W> <T>,
to perform the unexpected-termination analysis.
Results: The output at the end of the former script
constitutes part of the aggregate analysis numbers
from Section 5.1 of the paper except limited to the
child_process API (expect ~70,000 sinks reached
with ~1,500 unique sink-source pairs before filtering,
and ~40 unique sink-source pairs after filtering). It pro-
duces the SARIF files for manual review in a folder
named node/fuzzing/X-YYYY-MM-DD-HH-MM-SS.
The output at the end of the latter script constitutes
the remaining part of the aggregate analysis numbers
from Section 5.1 of the paper except limited to the
child_process API (expect 2 gadget candidates out
of ~111,000 crashes).

(E3): Comparison on Node.js v21.0.0 GHUNTER, 10 human-
minutes + <2 compute-hour + 50GB disk: The
GHUNTER part of the comparison between GHUNTER

3The full analysis can be performed by substituting “child_process” for
“all” in the experiment steps, but this requires hardware similar to that de-
scribed in the paper rather than hardware similar to that described in this
appendix and is expected to take over 96 hours to complete.

and Silent Spring on Node.js v21.0.0.
Set-up: Follow (S2).
Preparation: Not applicable.
Execution: Start ./run-compare-ss-21.sh to run
the source-to-sink analysis for the relevant APIs for the
comparison.
Results: This will output the results and also store them
in the node/fuzzing.ss21 folder. There will be 9 fold-
ers following the X-YYYY-MM-DD-HH-MM-SS naming
scheme. Each maps to a row from Table 3 of the paper ac-
cording to the mapping found in the project’s README
and contains two relevant files: count.txt for the num-
ber presented as “GC” in Table 3 and compare.json
with the properties and corresponding sinks of each
gadget candidate (validating them is a manual process).
False negatives are derived as FN = GT −T P.

(E4): Comparison on Node.js v21.0.0 Silent Spring, 10
human-minutes + <5 compute-hours + 2GB disk: The
Silent Spring part of the comparison between GHUNTER
and Silent Spring on Node.js v21.0.0.
Set-up: Follow (S3) and checkout 14966b5.
Preparation: Run node --version and ensure you
are using v21.0.0.
Execution: Start ./compare.sh.
Results: The script writes the raw results for the com-
parison as a folder per row of Table 3 in the paper in the
raw-data folder. Each folder contains the raw output
from Silent Spring as well as a ghunter.log file with
the data for comparison. In particular, the last line (start-
ing with Candidates) is the “GC” number from Table
3 and the data preceding it (starting from all props)
contains the true and false positives data (validating
them is a manual process). False negatives are derived
as FN = GT −T P.

(E3): Comparison on Node.js v16.13.1 GHUNTER, 10
human-minutes + <2 compute-hour + 50GB disk: The
GHUNTER part of the comparison between GHUNTER
and Silent Spring on Node.js v16.13.1.
Set-up: Follow (S2).
Preparation: Not applicable.
Execution: Start ./run-compare-ss-16.sh to run
the source-to-sink analysis for the relevant APIs for the
comparison.
Results: This will output the results and also store
them in the node/fuzzing.ss16 folder. There will
be 11 folders following the X-YYYY-MM-DD-HH-MM-SS
naming scheme. Each maps to a row from Table 2
of the paper according to the mapping found in the
project’s README and contains two relevant files:
count.txt for the number presented as “GC” in Ta-
ble 2 and compare.json with the properties and cor-
responding sinks of each gadget candidate (validating
them is a manual process). False negatives are derived
as FN = GT −T P.



(E6): Comparison on Node.js v16.13.1 Silent Spring, 10
human-minutes + <6 compute-hours + 2GB disk: The
Silent Spring part of the comparison between GHUNTER
and Silent Spring on Node.js v16.13.1.
Set-up: Follow (S3) and checkout a6ae944.
Preparation: Run node --version and ensure you
are using v16.13.1.
Execution: Start ./compare.sh.
Results: The script writes the raw results for the com-
parison as a folder per row of Table 2 in the paper in the
raw-data folder. Each folder contains the raw output
from Silent Spring as well as a ghunter.log file with
the data for comparison. In particular, the last line (start-
ing with Candidates) is the “GC” number from Table
2 and the data preceding it (starting from all props)
contains the true and false positives data (validating
them is a manual process). False negatives are derived
as FN = GT −T P.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


