
USENIX Security ’24 Artifact Appendix: METASAFE: Compiling for
Protecting Smart Pointer Metadata to Ensure Safe Rust Integrity

M. Kayondo
Seoul National University

I. Bang
Seoul National University

Y. Kwak
UNIST

H. Moon
UNIST

Y. Paek
Seoul National University

A Artifact Appendix

A.1 Abstract
This artifact provides an outline of steps to reproduce the
METASAFE + TRust benchmarks of the above mentioned
paper. We provide notes on system requirements, and how to
navigate possible challenges for those interested in building
the project from scratch.

A.2 Description & Requirements
METASAFE and TRust depend on Intel MPK, therefore, the
user of the artifact must build and execute the benchmarks
on an Intel Machine. As explained in the paper, we expect
the user to use a workstation running Ubuntu Jammy 22.04.2
LTS, with an Intel 11th Gen CPU with at least 8 cores and
72GB of RAM because TRust depends on SVF which requires
a substantial amount of memory at compile time. If the user
is interested in running the Docker image, we advise to run
on a machine with a minimum of 64GB disk space and 64GB
RAM.

A.2.1 Security, privacy, and ethical concerns

The artifact requires you install dependencies whose versions
may conflict with already existing versions on your system.
The PoCs provided have baselines with possible Buffer Over-
flow bugs that METASAFE is meant to prevent. Whereas such
buffer overflows are benign for the purposes of this test, we
would like to inform the users intending to execute the PoCs of
this fact. The PoCs are only meant for proving METASAFE’s
security guarantees.

A.2.2 How to access

A user interested in the artifact can find it at our github
repository: https://github.com/seccompgeek/
trust23-metsafe24/tree/v0.1.0 . At the repos-
itory, we provide instructions on how to obtain a Docker
images of an already setup built environment.

A.2.3 Hardware dependencies

For a user interested in building the artifact from scratch, we
recommend running a workstation with at least 72GB RAM, at
least 64GB free disk space, and an Intel CPU with MPK and
at least 8 CPU cores. For a user interested in simply running
the benchmarks in from the Docker images, we recommend
using a machine with at least 64GB disck space and at least
64GB RAM. If RAM is an issue, the user may modify the SVF
building/execution commands to lessen the analysis budget.

A.2.4 Software dependencies

The required dependencies are well explained on the github
repository. We expect the user to run an Ubuntu OS of version
no later than 18.04 LTS. For our experiments, however, we
use Ubuntu 22.04 LTS.

A.2.5 Benchmarks

For this artifact, we present the user with the METASAFE +
TRust benchmarks shown in Section 6.4 of the paper. On the
Github repository, we explain how to run each benchmark.

A.3 Set-up
Setup instructions are provided on the github repository.

A.3.1 Installation

Installation instructions are provided on the github repository.

A.3.2 Basic Test

Run the Simple PoC as given in the Github repository. You
may also run the SmallVec PoC to test METASAFE’s insertion
of metadata checks.

A.4 Evaluation workflow
The evaluation involves running the baseline (without TRust
or METASAFE). Then another run with TRust is required to

https://github.com/seccompgeek/trust23-metsafe24/tree/v0.1.0
https://github.com/seccompgeek/trust23-metsafe24/tree/v0.1.0


obtain the TRust overhead compared to the baseline. Finally,
another run with TRust + METASAFE is required to obtain
the overhead of METASAFE on TRust. The benchmarks are
based on Rust’s Bencher. At the end of each run, averaging
the runtimes is required. We provide a simple tool that will
anlalyse the results of each run to provide the average runtime.
For memory overhead, we read the Maximum Resident Size
provided by /usr/bin/time with the -v option, as explained in
the Github repository.

A.4.1 Major Claims

Trust incurs performance and memory overhead compared
with the baseline. To that end, we expect METASAFE to incur
added overhead on top of TRust.
(C1): We expect TRust + METASAFE to incur a runtime

overhead of 13% geomean over the baseline, compared
to Trust’s 11%. Therefore, we expect METASAFE to
incur about 3% added overhead to TRust or any similar
system.

(C2): Additionally, TRust + METASAFE incurs about 83%
memory overhead (geomean) compared to TRust’s 69%.

(C3): We expect METASAFE to prevent or catch the memory
bugs related to smart pointers as shown in the PoCs
provided. In absence of METASAFE, we expect the mem-
ory bugs to cause issues such as Segmentation Faults
or allocator-side errors. With METASAFE, we expect
the bugs to be caught at runtime before they cause any
errors.

A.4.2 Experiments

For a user intending to build the artifact from scratch, we
expect more man hours. For a user intending to simply run
experiments from the Docker image, we expect less man hours,
mostly spent on running experiments and analyzing them.
(E1): [Building the artifact from scratch] [30 human-minutes

+ 2 compute-hour + 35GB disk]:
How to: Access the Github repository and follow the
instructions. Install dependencies as instructed.
Preparation: Install the dependencies and clone the
artifact from Github.
Execution: Build the rust compiler and create a custom
toolchain. Build SVF.
Results: Should a custom rust compiler installed, and
SVF setup, with its LLVM linked to the rust compiler’s
version.

(E2): [Running and analyzing the Benchmarks:] [2 human-
hour + 5 compute-hour]: Mostly due to SVF analysis.
Some benchmarks don’t take that long. Only Hyper and
Tokio take long. At the end, the user should have results
to compare with the claims in the paper.

A.5 Notes on Reusability
The benchmarks provided for Trust + METASAFE are highly
reusable. Especially the Docker image version with the al-
ready built environment. Reproducing and reducing the Servo
results is particularly challenging due to the huge number
of dependencies (each with a differing version), and that’s
the major reason we do not present it here. Please run each
benchmark, saving the output in a file. Then run the results
analyzer mentioned on the Github README with the output
file as the parameter. The results analyzer prints the average
runtime. After gathering the average runtime for the base-
line, TRust and TRust + METASAFE, you can obtain the
normalized overhead.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


