
USENIX Security ’24 Artifact Appendix: GoFetch: Breaking
Constant-Time Cryptographic Implementations Using Data

Memory-Dependent Prefetchers

Boru Chen
UIUC

Yingchen Wang
UT Austin

Pradyumna Shome
Georgia Tech

Christopher W. Fletcher
UC Berkeley

David Kohlbrenner
University of Washington

Riccardo Paccagnella
Carnegie Mellon University

Daniel Genkin
Georgia Tech

A Artifact Appendix

A.1 Abstract
This artifact includes source code of reverse engineering ex-
periments and key extraction attack PoCs in the research
paper. The hardware requirement is an Apple M1 machine
(more details in A.2.3). The software requirement is macOS
13 or 14 (more details in A.2.4). Reproducing reverse engi-
neering experiments will take approximately 1 day. For attack
PoCs, the time consumption is summarized in Table 1 of the
research paper.

A.2 Description & Requirements
This artifact contains (i) reverse-engineering experiments
that disclose the activation criteria of Apple DMPs and (ii)
one pedagogical PoC (constant-time swap) and four real
cryptography PoCs (Go’s RSA Encryption, OpenSSL Diffie-
Hellman Key Exchange, CRYSTALS-Kyber and CRYSTALS-
Dilithium) that demonstrate how to leverage Apple DMPs to
conduct chosen-input attacks against constant-time crypto-
graphic implementations.

A.2.1 Security, privacy, and ethical concerns

Experiments are running on evaluator-owned machine under
full control. No other machines are involved.

A.2.2 How to access

All source code is posted to our GitHub repository
https://github.com/FPSG-UIUC/GoFetch. The stable
reference is https://github.com/FPSG-UIUC/GoFetch/
releases/tag/usenix2024ae.

A.2.3 Hardware dependencies

The hardware requirement is an Apple M1 machine. Other M-
series CPUs (i.e. M1 Max, M2, M3, etc) should show similar

reverse-engineering results with parameter tweak (e.g. cache
size), while attack PoCs require engineering efforts to port to
other Apple silicons.

A.2.4 Software dependencies

A default configuration of macOS (reverse-engineering ex-
periments have support for Asahi Linux). Programs require
Rust and Clang for compilation.

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

Run xcode-select -install to install Xcode command
line tools. Run curl -proto ’=https’ -tlsv1.2 -sSf
https://sh.rustup.rs | sh to install Rust.

A.3.2 Basic Test

Please follow Set up Environment and DIT Bit Test (Quick
Test) in the README to check the functionality of reverse-
engineering tools. We expect to see Detect DMP signals!! on
M1/M2 no matter DIT bit is set or not and on M3 processors,
setting DIT bit should result in NO DMP signals!!.

Please follow Constant-Time Conditional Swap in the
README to check the functionality of attack PoC tool.

A.4 Evaluation workflow
Please checkout the README in the artifact for instructions
of how to conduct and what to expect for each experiment.
The experimental results could vary depending on different
processors in Apple M-series and operating systems, but the
figure trend/claim in the paper should maintain.

https://github.com/FPSG-UIUC/GoFetch
https://github.com/FPSG-UIUC/GoFetch/releases/tag/usenix2024ae
https://github.com/FPSG-UIUC/GoFetch/releases/tag/usenix2024ae


A.4.1 Major Claims

(C1): We reverse engineer the DMP found on Apple CPUs
and discover new activation criteria that prior work
overlook. This is proven by experiments in Section 4 of
the paper.

(C2): We develop new type of chosen-input attack with DMP
assistance and demonstrate it with end-to-end PoCs. This
is proven by experiments in Section 5-7 of the paper.

A.4.2 Experiments

Please checkout the README in the artifact for experiment
descriptions.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


