
USENIX Security ’24 Artifact Appendix: “FFXE: Dynamic Control Flow
Graph Recovery for Embedded Firmware Binaries”

Ryan Tsang
University of California, Davis

Asmita
University of California, Davis

Doreen Joseph
University of California, Davis

Soheil Salehi
University of Arizona

Prasant Mohapatra
University of California, Davis

Houman Homayoun
University of California, Davis

A Artifact Appendix

A.1 Abstract

This appendix describes the software artifacts for the paper
FFXE: Dynamic Control Flow Graph Recovery for Embedded
Firmware Binaries. It contains information on the contents of
the artifact repository, the software requirements for usage, as
well as instructions for setup and reproduction of experiments.

A.2 Description & Requirements

Artifacts were developed natively on an Apple Macbook M1
Pro, primarily in Python; however, to the best of our knowl-
edge, none of primary the artifacts for reproduction are ma-
chine or architecture-specific. So long as the prequisite Python
packages install without error, tests for FFXE itself should be
able to run natively (this is untested on Windows).

We have provided a Dockerfile that also installs additional
software for running tests for the other tools FFXE was com-
pared against. The build time for the Dockerfile is quite long,
however, and upon request, we can provide a prebuilt docker
image file directly. The Dockerfile has not been tested on
Windows.

Please note that because we could not obtain approval from
healthetile.io to release their firmware artifacts, the case study
outlined in the main paper under Section 5.4 is unavailable
for evaluation.

A.2.1 Security, privacy, and ethical concerns

To the best of our knowledge, executing the code in our repos-
itory should not present any risk to the machine security of
any evaluators.

It should be noted that we do run the Docker container
provided with -privileged enabled due to performance lim-
itations in unprivileged mode.

A.2.2 How to access

Our artifact repository at commit 17adcd8 can be accessed
on GitHub at the following link: https://github.com/
rchtsang/ffxe/tree/17adcd8

A.2.3 Hardware dependencies

Our artifacts have been tested on an Apple Macbook M1 Pro
with 16GB RAM and 8 performance cores.

Multiple cores should not be necessary for evaluation. We
have not tested the software on a machine with less RAM
within recent history and cannot make guarantees for ma-
chines with less than that; however, we believe less RAM
(around 10-12GB) should not present a major issue.

No other specific hardware features should be necessary.

A.2.4 Software dependencies

Software was tested natively and in a Docker container backed
by a vanilla Colima instance.

To run only FFXE tests natively, the following software is
needed:

• conda/mamba >= 23.9.0 (recommend miniforge)

Required Python packages are managed by conda environ-
ments whose YAML files can be found in the repository under
docker/envs.

To run tests for other tools for comparison purposes, the
following additional software is needed:

• Ghidra >= 10.3.2

• Ghidrathon >= 4.0.0

We will not provide installation instructions for Ghidra
and Ghidrathon as we have provided a Dockerfile should the
evaluator be interested in running those tests.

Note that for full reproduction of our real-world tests, we
also rely on FirmXRay to locate base addresses before begin-
ning our analysis. As this is an older project, it is difficult to
install natively and we highly recommend using the provided

https://github.com/rchtsang/ffxe/tree/17adcd8
https://github.com/rchtsang/ffxe/tree/17adcd8
https://github.com/conda-forge/miniforge/tree/09dd7a6
https://github.com/NationalSecurityAgency/ghidra/tree/68cad06
https://github.com/mandiant/Ghidrathon/tree/f4c0caf
hhttps://github.com/OSUSecLab/FirmXRay/tree/b118db8

Dockerfile, though this should not be necessary for recreation
of immediate results.

To run tests in Docker, the following software is needed:

• Docker >= 25.0.2

• make >= 3.81 (convenience Makefile on Mac/Linux to
build/run docker container)

A.2.5 Benchmarks

No addtional datasets need to be fetched for this artifact, as
all necessary samples are already included in the repository.

A.3 Set-up
A.3.1 Installation

Native (for running FFXE tests only)
Once conda/mamba has been installed, the environment for

running FFXE tests can be installed by running the following
command from the root directory:
conda env create -f docker/envs/ffxe.yml
ffxe must be installed with the following command at the

project root to make use of scripts:
pip install -e .
Docker
Once docker is installed, a docker daemon must be running

before invoking any docker commands. If Docker for Desktop
is installed, the application should be open to begin running
the daemon. Colima is another alternative and can be initiated
with colima start.

Ensure that the daemon is live by running docker
version. If no message saying "is docker daemon running?"
is displayed, then the daemon is live.

To build and run the docker container, use the following
commands:

build docker image
$ docker build -t ffxe/workspace:dev docker

start a container
$ docker run \

-t -d \
--privileged \
--init \
--name=ffxe-workspace \
--entrypoint=bash \
-v `pwd`:/home/ffxe \
ffxe/workspace:dev

get a shell in container
$ docker exec -w /home/ffxe -it ffxe-workspace

/bin/bash↪→

kill running container
$ docker rm -f ffxe-workspace

A.3.2 Basic Test

Native (for FFXE tests only)
The basic FFXE tests can be invoked by running the fol-

lowing from the repository root:

activate conda environment
$ conda activate ffxe
install ffxe as package (must be done on

first activation of ffxe env)↪→

$ pip install -e .
run the basic tests
$ python tests/test-unit.py

A series of results should be printed for the basic firmware
samples. If this is the case, the real-world samples can also
be run using scripts/test-real.py.

Running both of these will produce CFGs that be used in
later comparisons to reproduce results.

Docker
The same tests as above can also be performed in docker

after getting a shell in a built container.
However, do note that due to limitations of docker on Ma-

cOS, the performance is considerably worse. These limita-
tions will not be present if run in a docker container on Linux.

A.4 Evaluation workflow
A.4.1 Major Claims

We make the following major claim in our paper:
(C1): FFXE is able to resolve CFG edges corresponding to

indirect function calls for registered functions in inter-
rupt service routines where other tools cannot.

Other claims made in our paper are incidental to this ma-
jor claim. (Our claims regarding complementary coverage
comparison follow directly from this major claim. Real-world
comparisons did not explicitly test for this claim and were in-
cluded at the request of the reviewers during revisions. Those
comparisons can be repeated, but we will not outline the steps
here. All code used to produce our main papers figures is
present in our artifact repository.)

A.4.2 Experiments

(E1): Resolving Registered Functions [30 human-minutes +
<=2 compute-hour + <1GB disk]: In this experiment,
multiple tools including FFXE are used to recover CFGs
from a set of known firmware samples taken from the
Nordic NRF5 SDK which contain indirect calls to reg-
istered functions. Recovered CFGs are then analyzed
to check if any edges to registered function sites are

https://docs.docker.com/get-docker/

actually resolved and the results are tabulated into the
LaTeX-formatted table used for Table 1 of the main pa-
per.
How to: To reproduce this experiment, run scripts
to perform CFG extraction for sdk samples for
each tested engine: FXE, FFXE, Ghidra, and angr.
The extracted CFGs will then be compared against
the known registered function locations found in
tests/registered-functions.json to check if any
edges to those locations were successfully identified.
Preparation: Scripts for each set of tools requires acti-
vating a different conda environment, which can be done
as follows from the root directory:
$ conda activate ffxe ; pip install -e .
$ conda activate ghidra
$ conda activate angr

Environments should be deactivated before activating a
new one.
Execution: 1. Run FFXE tests (natively or in docker)

$ # conda env must be active
$ [$(basename $CONDA_PREFIX) = "ffxe"

] || conda activate ffxe↪→

$ # ffxe must be installed in conda env
via pip↪→

$ [pip show ffxe &> /dev/null] || pip
install -e .↪→

$ python tests/test-unit.py
$ conda deactivate

2. Run FXE tests (natively or in docker)
$ # conda activate ffxe
$ python tests/fxe-all.py
$ # conda deactivate

3. Run ghidra tests (natively or in docker)
$ # conda activate ghidra
$ python scripts/ghidra-analyze.py
$ # conda deactivate

4. Run angr tests (natively or in docker)
$ # conda activate angr
$ python scripts/angr-analyze.py
$ # conda deactivate

Results: The script to generate the Table 1 from
our main paper analyzes each CFG and looks for
edges to the known indirectly-called functions listed
in tests/registered-functions.json.
The script will print out the latex-formatted table and can
be run after all above scripts are run using the commands:
$ conda activate ffxe
$ python scripts/tabulate-regfuncs.py

A.5 Notes on Reusability
FFXE currently outputs its CFG as a python pickle file serial-
ized with the dill package. The output CFG is represented

essentially as a dictionary containing the keys "nodes" and
"edges".

The "nodes" value is a set of tuples containing the start
address of the basic block and its size in bytes.

The "edges" value is a set of tuples containing a "from"
address and a "to" address that represent the beginning and
end of an edge.

Obviously this isn’t a terribly useful format for direct anal-
ysis, but it was chosen to make comparisons presented in the
paper easier. There is a better CFG and basic block model
classes in the models.py file.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2024/.

https://secartifacts.github.io/usenixsec2024/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

